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Given a criterion variable and two or more predictors, applied linear prediction usually 
entails some form of OLS regression. But when there are several predictors, and especially 
when these are subject to non-ignorable errors of measurement, applications of OLS methods 
are often fraught with problems. Weighted structural regression (WSR) methods can 
mitigate many difficulties through the incorporation of prior structural models into analyses. 
WSR methods are sufficiently general to include OLS, ridge, reduced rank regression, as 
well as most covariance structural regression models, as special cases; many other regression 
methods, heretofore not available, are also included. In this article adaptive forms of WSR 
are developed and discussed. According to our bootstrapping studies the new methods have 
potential to recover known population regression weights and predict criterion score values 
routinely better than OLS with which they are compared. These new methods are scale free 
as well as simple to compute; they seem well suited to many prediction applications in 
behavioral research. 

Although ordinary least squares (OLS) regression methods are widely 
used in prediction, a number of problems are known to restrict their applicability, 
especially in circumstances commonly encountered in behavioral research. 
Unlike prediction in the physical or natural sciences, three major problems 
typically characterize regression applications in the social and behavioral 
sciences: (a) there are usually numerous social and behavioral variables from 
which one must select or compose prospective predictors for analyses; (b) 
sample size n is often limited, frequently so much that the ratio ofp, the number 
of variables, to n may approach - and can even exceed - unity; and (c) there 
are generally non-ignorable measurement errors associated with individual 
observations, for both predictors and criterion variables, errors that tend to 
weaken or confuse predictive relationships. 

These features of social and behavioral data systems have a major role in 
complicating researchers' abilities to find stable or interpretable predictive 
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models. However, as we shall show, regression methods can be devised to 
account for measurement errors, and that do not necessarily deteriorate a s p  
grows larger for a given n. 

In this article we focus on regression methods intended for general 
exploratory applications where there may be several correlated predictors, 
where sample sizes may be limited, and where one's prior knowledge of 
relationships among variables is likely to be relatively vague or diffuse. We 
are not concerned with fixed predictors, as typically employed in experimental 
contexts, but rather with random or stochastic variables, which properly 
characterize most predictors used in observational studies. 

The principal purpose of this article is to describe and discuss a class of 
stochastic variable linear prediction methods that provides ways for analysts 
to incorporate prior or collateral information into analyses. It will be assumed 
that the prior information to be used takes the form of a structural model, one 
that generally assumes the existence of measurement errors in all observed 
variables. Unlike recently developed structural analytic approaches to regression 
which are designed to estimate parameters within the context of specific, 
prechosen structural models, the methods to be examined here incorporate 
structural information in an adaptive fashion, capitalizing on it only to the 
extent that extant data are consistent with that information. Thus, in relation 
to conventional structural methods the new ones generally offer more flexible 
ways for analysts to incorporate prior information into analyses. As we shall 
see below, the role of prior information tends to be of distinctive value in 
situations where there are numerous predictors, especially when sample sizes 
are limited. (See Laughlin, 1986, for an excellent review of the role of prior 
information in selected regression methods.) 

Our general approach uses both psychometric and statistical principles to 
generate a class of methods that can be supported with either frequentisl or 
Bayesian arguments. However, in relation to most previously developed 
statistical methods for incorporating prior information the present system 
based on using prior structural information will often provide substantial 
advantages to the analyst even if the prior structural model is relatively vague 
or diffuse. Although it is possible to use the new methods with virtually any 
type of covariance structure model, ranging from exploratory to confirmatory, 
in this article we have chosen to emphasize the exploratory mode. 

The class of methods under consideration is described as weighted 
structural regression (WSR). Although WSR methods include OLS methods 
within their broad framework, most WSR estimators have properties that 
distinguish them from OLS estimators. All non-OLS forms of WSR coefficient 
estimators are generally biased, at least when there are no observation errors 
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in the variables. Yet our simulation results suggest that reductions in sampling 
variability will often more than compensate for the bias, and can lead to results 
that are more readily interpretable than their OLS counterparts. In particular, 
our simulations, which are based on a real data prediction problem, suggest that 
the new adaptive regression estimators can typically recover population 
weights (ps) with lower mean squared errors than their least squares stochastic 
variable counterparts; and predictor score values Cys) can generally be estimated 
more accurately in cross-validation samples when using WSR methods. 
Furthermore, the algorithms for these methods need not break down even when 
the original covariance or correlation matrix is singular. 

Chen (1979), in an article that strongly influenced our thinking, developed 
a theoretically sophisticated Bayesian approach to regression using structural 
priors in combination with empirical data to generate posterior distributions 
from which prediction equations can be derived. But despite the theoretical 
appeal and formal rigor of his methods, we  have been unable to find a single 
prediction application based on Chen's methods in the decade following his 
publication. Although our general approach parallels Chen's, we  do not use 
maximum likelihood estimation techniques for structural estimation since 
their use with small samples often tends to be problematic. Instead, we 
concentrate on minimizing a risk function. Coefficient estimators thus derived 
will be called MinRisk (MR) estimators. Although we do not use Chen's 
estimation methods, by connecting our work wi th Chen's theoretical framework, 
it is possible to provide a basis for estimating standard errors for MR 
coefficient estimators, thus providing a general operational system for inference 
that in many respects parallels conventional OLS methodology. 

The central principle of our approach to WSR estimation is that when the 
joint predictor-criterion covariance or correlation matrix can be even roughly 
approximated using a relatively parsimonious structural model, for example, 
acommon factor model of low dimensionality, one can incorporate information 
from that model to stabilize, and also possibly enhance the interpretability of, 
derived regression equations. 

The first step in producing WSR estimators is to generate a convex sum 
estimator of the joint predictor-criterion covariance matrix. This estimator has 
the form 

where 2, represents the conventional model-free covariance estimator, and 

'modrl-bosed refers to a model-derived covariance estimator based on the same data 
used to generate X,. The scalar w(0 I w I 1) will generally be computed on 
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the basis of lack of fit of the structural model to observed data. WSR regression 
coefficients are generated from ecs in a manner that directly parallels OLS 
procedures for random variable prediction. 

The remainder of this article is divided into six sections. In the first we 
provide a brief introduction to weighted structural regression, and review 
sampling assumptions used in the following technical sections. Next, we 
present two distinctive forms of covariance estimators based on minimizing 
risk; this entails optimizing weights based on loss functions, in one case for 
populations with no covariance structure and in another, for populations that 
are taken to have approximate common factor structure. The third section 
applies the basic results of risk theory to regression estimation. In the fourth 
section we describe a scaling system and propose a corresponding common 
factor algorithm, aspects that bear directly on how the new methodscan be used 
effectively in practice. Next, we present a modest bootstrapping study, using 
real data to compare several forms of the new methods with their OLS 
counterparts. In the sixth section we briefly discuss the rationale of the new 
prediction methods, compare them with conventional methods, and make 
some suggestions concerning applications. 

Some Technical Background for Weighted Structural Regression 

For any set of k predictor variables and a criterion, OLS regression 
equations can be simply derived from the joint covariance matrix of all 
observed variables. In particular, ify designates the criterion variable andx the 
predictors, then the (1 I k) symmetrically partitioned sample covariance matrix 

can provide the basis for computing f3, the k x 1 vector of ordinary least squares 
regression coefficients, 

where$= represents the k x k covariance matrix for the independent variables, 
and\ is the vector of k predictor-criterion covariances. (We assume without 
loss of generality that all variables been converted to deviation score form; thus 
the intercept term is necessarily zero. Moreover, any variable in a system can 
be moved to the first position so this also is no restriction.) 
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WSR estimators are of the same form as Equation 3, except the covariance 
matrix they derive from is a convex sum estimator of the form of expression 
in Equation 1. In particular, for present purposes we shall suppose that the 
model-based covariance estimator in Equation 1 takes the fo rmi+  = f@ +02, 
f o r k  of order p x m with m orthogonal factors. If the matrices F ando*  are 
partitioned to correspond to the criterion and predictor variables where, 

and the partitioned form of the joint predictor covariance matrix in Equations 
2 and 3 is replaced with the convex sum estimator in Equation 1, then with some 
algebraic manipulation, it is seen that the WSR coefficient vector takes the 
form 

Note that if the scalar w = 1, Equation 5 is equivalent to Equation 3; if w = 0, 
then Equation 5 generally yields a reduced rank representation for the vector 
of regression coefficients (Lawley & Maxwell, 1973; Pruzek & Frederick, 
1978). If m = 0 (so that each term with t d r o p s  out), with an intermediate value 
of w, then Equation 5 depicts a ridge representation for the vector of regression 
weights. Generally, however, for any given number of common factors, m, the 
scalar w can be preset according to how much weight the analyst chooses to 
give to the respective covariance estimators in the convex sum; alternatively, 
w can be estimated from the data adaptively, thus forming a convex sum based 
on how well the data support the given common factor model. In this article 
we  focus on the latter concept. 

In the following sections the model-based covariance estimator,emodel~based 
= f ,, is computed using specialized common factor procedures that tend to 
ensure scale-freeness of derived factors. Development of MinRisk methods 
will entail generating a specific scalar weight, wm, to provide a particular 
convex sum using an m-factor model. Given this convex sum covariance 
matrix of the form of ecs in Equation 1, one can construct the vector of 
corresponding regression weights, as well as regression estimates. Although 
variations on the initial MinRisk procedure are considered, both in principle 
and in sirnul,ttion studies, the main emphasis in what follows derives from 
minimizing risk for the joint predictor-criterion covariance matrix. 

In the foregoing paragraphs the sampling model is only implicit. To make 
it explicit, we shall assume that a system of n observation vectors (each 
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composed of one criterion score, and k = p - 1 predictor values), z,, z,, ..., zn, 
for n > p ,  represents a random sample of np-dimensional scores from a multi- 
variate normal distribution with mean zero and positive definite covariance 
matrix Z; that is, zi - MN(0, 2). (To keep the notation relatively simple we 
continue to assume that the first observation zl, in each vector zl represents 
criterion measurements so that the remaining observationszi2, ..., zlpcorrespond 
to scores on stochastic predictor variables. Sample vectorszl are also assumed 
to have been centered with respect to the vector of sample means.) 

From the foregoing sampling assumption i t  follows that sample covariance 
estimators of the form &,, = (lln)C;=,z,zrl follow a Wishart form, namely, 
&,, - wp(2, n-1). 

In deriving a general class of covariance estimators, we shall find it useful 
to consider an eigenanalysis, or singular value decomposition, of an 
appropriately scaled covariance estimator. The question of scaling becomes 
crucial in analysis since the eigen decomposition of a particular covariance 
matrix is not invariant to multiplicative changes in the scales of the different 
variables. In order to provide a means to associate the eigenstructure of an 
appropriately scaled covariance matrix to the structure of%, the observed (raw 
metric) covariance matrix, we shall assume - at the outset - that the original 
2 has been rescaled in the metric of a known diagonal scaling matrix, Dl. Thus, 
D - I ~ D - I  = 2' will represent the scaled covariance matrix for the rescaled 
variables. (The asterisk denotes rescaled form; for simplicity, the symbo12 will 
be used interchangeably withe,,, as used above.) 

As the following developments make clear the proposed forms of covariance1 
regression estimators will generally depend upon the choice of D2, and one's 
prior structural model will include specification for D'. In the next section we 
shall concentrate first (Case I) on estimating population covariance matrices in 
the situation where no covariance model has been advanced; for Case I1 we 
shall assume an approximate factor analytic structure for the population 
covariance matrix. 

Covariance Structure and Covariance Risk Estimation 

CASE I: (No structural model restrictions on Z) 

Many of the concepts in this initial discussion are introduced primarily to 
provide a basis for our Case I1 development. The first case of interest entails 
adding a constaril to each diagonal entry in the usual model-free maximum 
likelihood estimatore' of the rescaled population covariance matrix, using the 
fixed diagonal D2 for rescaling. In applications which are discussed later, D2 
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will be estimated from the sample covariance matrix; we shall have more to say 
about this later. 

Our first procedure for generating a covariance estimator rests on previous 
unpublished work of others, notably that of Press (1975) and especially Chen 
(1976). Press introduced the basic loss function on which we focus, namely 

where the latter summation is understood to include all rows and columns of 
2'. The quantities ir;, and o;, represent entries in the matrices 5' and P', 
respectively. The associated risk is defined as ~ ( 5 ' )  = ~ t r @ '  - Z*)', where E(-) 
denotes expected value operator. 

Chen (1976) discussed a class of estimators of a covariance matrix in the 
form of a convex sum as 

where w, = ?l(n + yo), yo > 0, g is a specified scalar, and I is the identity matrix. 
The risk of Z:s-wo as an estimator for the population Z* using the loss function 
in Equation 6 is minipized for !his particular cboice of w,. To elaborate, define 
g = go = tr@*)lp = zA/p, withG = &I, where A, denotes the eigenvalues o f t * .  
From Equation 7, we have 

where the eigenvalues ;\ and eigenvectors~ of$* result from D - ~ D - I  =Q;\Q'. 
The risks for various covariance estimators are given in Appendix A. In 
particular, Equation 8 in Appendix A shows an expression for 
{R@*) - R@:~-~J}. Denoting this difference by AR(yo), for each given yo > 0, 
the optimal choice for yo, setting the dR(yo)layo = 0, results in 

where r, = (trZ')2/tr(Z'2) and 1 < r, sp .  For present purposes, since Z' is not 
observable, we use 6 = (trt')21tr@'2) as an estimator for r,. It can be shown that 
;, tends toward p, from below, as the eigenvalues approach their average 
value, go. Consequently, 6 provides an index on a scale from 1 top of whether 
the sample lies nearer some unknown non-diagonal matrix, say Funknowno 
(index = I), versus g,I (index = p). Given io = (p(1 + 2,) - 2} l@ - r,) and 
w, = nl(n + i,), the index w, can be described as a badness of fit index on a scale 
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from zero to unity, representing how poorly $;5-wo in Equation 8 fits the scalar 
diagonal goI. The complement 1 - w, is thus a goodness of fit index. 

Chen showed that for any given positive definite covariance matrix, with 
p 2 2, AR(yo) > 0 for all n if and only if 

(10) 0 < y, < 2@(l + r,) - 2)/@ - r,). 

This expression and Equation 9 will both be used to define regression 
estimators later. 

The reader can see that estimators of the form of Equation 8 generally 
shrink all eigenvalues of the covariance estimator toward the middle. 
Consequently, use of an estimator such as Equation 8 is consistent with the fact 
that the largest eigenvalues of a sample covariance matrix are generally 
positively biased for their population analogs, and the smallest eigenvalues are 
generally negatively biased estimators of their population counterparts 
(Anderson, 1984). 

It is useful for Case I to think of Z as being approximated by a factor 
structure with zero common factors, so that provisionally, 2 = goD2, a diagonal 
matrix. Thus, the rescaled form Z' = D-'ZD-' = goI, which shows that 
covariance estimators of the form Equation 8 result in all sample eigenvalues 
being shrunk symmetrically toward i,. 

The indices ro and yo have previously been used as measures of sphericity 
of distribution (cf. Dempster, 1969). The covariance e s t i m a t ~ r t : ~ - ~ "  is used in 
the derivation of a generalized ridge version of our WSR procedures (compare 
Equation 5 with Equation 22 below). We next examine the case where the 
population covariance matrix is assumed to have some non-null off-diagonal 
structure. 

CASE 11: (Using a Common Factor Model for X) 

For this Case, we introduce a new assumption, namely that the population 
covariance matrix Z can be approximated using a common factor structure (in 
practice, one with relatively low rank). Through use of this assumption, a new 
covariance estimator shall be devised that is in the spirit ~ f $ ~ ~ - , , , ~ '  in Equation 
8, but where the number, m, of common factors is prespecified to exceed zero. 

Lawley (cf. Lawley & Maxwell, 1971) and Rao (1955) have demonstrated 
that it is a useful statistical principle in common factor analyses to rescale 
covariance matrices in the metric of the unique-factor variances. Following 
their lead, and noting Harris' (1962) development of connections between 
statistical and psychometric approaches to factor analysis, we use an eigenvaluei 
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eigenvector decomposition of the rescaled covariance estimator of Z with D2 
= U2. In this case 

where U2 represents a fixed diagonal matrix of uniqueness varian$ees, Q is a 
p x p matrix of column unit-length eigenvectors, and A = diag(Aj depicts 
eigenvalues of U - ' 2 ~ - I .  

We assume - at the outset - that U2 is a known diagonal matrix 
consisting of uniqueness variances, and gm is a scaling constant. In particular, 
we shall reexpress Equation 1 1  as 

r n n  

(12) 9* = ( w ~ )  Q AQ' + (1 - wm) Q (A - g , , , ~ ~  t g m ~ p ) ~ l ,  

!hi> being just a! id~niity for 8'. Now the last Jerm in Equation 12 is 
Q(A - g I + g 1 @jQ' =Q(A - gmlPQ1 t gmIp wheneverQ is square, that is, when 

" ' P  "'I' 
all eigenvectors are used in Q. (If there are multiple eigenvalues the vectors 
corresponding to them can be taken as mutually orthogonal.) In turn, we can 
write 

where 

n  

represent a partitioning o fQ and A into sets of m and p - m eigenvectors and 
values, respectively. 

The final expression in Equation 13 now involves the so-called rejected 
eigenvalues; the m factors that remain correspond to the largest eigenvalues of 

- %*, and thus t h ~  accepted common factors. If we define gm = im - 
{I/@ - m ) ) ~ = , + ,  A,, the average of the rejected eigenvalues, the second term in 
Equation 13 tends to vanish as n - m if the m-factor model holds in the 
population and U2 is known (cf. Lawley & Maxwell, 1971). In this case the 
last term in Equation 13 reflects mere noise in the data in the sense that the 
smallest eigcnvalues and corresponding vectors of the rescaled sample matrix 
will tend to represent only stochastic variation in the'dample relative to the 
p - rn smallest population eigenvalues, all of which are equal. If Equation 13 
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is rewritten to exclude the noise term then the covariance estimator in Equation 
12 reduces to 

which for 0 5 wm 5 1 generally yields a convex sum of two covariance 
estimators of 2'. When the common factor model does not hold exactly then 
it would be desirable for wm to exceed zero to the extent that the m-factor model 
is inappropriate. 

At this point it would be convenient to be able to demonstrate an analytical 
solution for wm in Equation 14, the analog of w, in Equation 8. However, this 
problem has proven difficult. Reasoning by analogy with the Case 1 solution, 
however, the application of minimum risk principles to Case 11 yields a 
procedure that is theoretically attractive and which has worked well in 
numerous trials. We present this mechanism next. 

By modifying the previous terms r, and y,, one can define the scalar wm 
so as to achieve the desired type of convex sum weighting in Equation 14. 
The basic argument to be presented ensues from the discussion following 
Equation 9. 

The major new requirement for the Case I1 solution is that instead of 
assuming that all eigenvalues of 2' approach the same limit as n --r w when the 
statement 2' = g,I is true, we instead assume that only the p - m smallest 
eigenvalues of the properly scaled covariance matrix approach the same value 
im as n -+ m when the more liberal statement 2' = F'F" + gmI is true. (The 
notation F' is used to be consistent with the * used to symbolize the rescaled 
covariance matrix.) When the population cfa-m model is true (and the 
uniqueness diagonal known) then the smallestp - m eigenvalues of interest will 
equal 06ne anothq (Lawley & Maxwell, 1971). Consequently, by setting < = 
(Z;m+I $)2/2y=Clk,2, and letting q = p  - m, we see that f --r q from below as the 
rejected eigenvalues approach their common value i m .  Given that m is chosen 
to be relatively small, for what may be termed aparsimonious structural model, 
the index im varies between the limits 1 and q =p - m and indicates whether the 
sample matrixf :s.c,a.m lies nearer some Xinltnown (index = 1) versus the relatively 
parsimonious form C' = F,*F,*' + gmI (index = q). Using the representations 
;m = (p(1 + im - 2)l(p - im), and wm = nl(n + qm), the index wm can be described 
as a badness of fit index on a scale from zero to unity, representing how poorly 

fb-cfa-m in Equation 14 fits the common factor form FmgFm" + gmI. The 
complementary term 1 - wm represents a goodness of fit index. 

Although these specifications for ym and wm are consistent with those for 
Case I, it is clear that the above arguments do not constitute an analytical proof. 
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We invite readers to provide analytic solutions for ym and wm using this or other 
appropriate rationale. 

Given either of the covariance estimators, Equations 8 or 14, one can 
construct unscaled covariance representations of the population 2 in any 
arbitrary metric. Thus, from Equation 8, we see that for the Case I solution 

r n n  

where 5 = D Q A Q'D. 
From Equation 14 we have the parallel forms for Case 11, 

or its equivalent, 

n n 

where = DQm(Am - ~ m ~ m ) 1 i 2 ,  a standard form for the matrix of common factor 
coefficients. Another way to represent the latter form is to write 

The latter expression shows explicitly thattcs-cJu-m can be thought of as the usual 
reduced rank covariance estimator to which part of the residual covariance 
matrix is added, according to the weight wm. 

Note that if m = 0 the representation in Equation 18 includes the expression 
of Equation 16 as a special case. Consequently, we shall ignore the less general 
Equations 15 and 16 in what follows. It should be clear, however, that we will 
do well to continue to make conceptual distinctions between the cases m = 
0 and m > 0. Equations 18 and 19 define a covariance estimator of exactly the 
same form as the structural Bayesian estimator given by Chen (1979, p. 236). 
However, our methods for estimating the convex sum weighting coefficient 
differ in that our system is non-iterative since we use available eigenvalues 
directly, given 20, whereas Chen7s solution requires maximum likelihood 
estimation and an iterative process based on the EM algorithm. Of course we 
have required - so far - that D2 is known apriori, an unrealistic assumption 
in practice. However, this assunlption will be relaxed later. Regardless of the 
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value of m, Equation 18 combined with the general Case I1 method for 
estimating wm, provides a closed-form solution for an estimator of the 
population covariance matrix, an estimator that will serve as a basis for 
regression estimation. 

Covariance Estimation as a Basis for Weighted Structural Regression 

Given that the basic procedure for generating covariance estimators of the 
general form in Equation 18 has been developed, f c5-,-m can be used as a basis 
for computing avector of structural regression coefficients. In particular, if the 
covariance estimator 4s.c,u-m is partitioned as in Equation 2, then 

from which it is straightforward to obtain structural regression estimators of 
the form of Equation 3. (Again, to simplify notation, but without loss of 
generality, the first variable is designated as the criterion, to be predicted from 
the remaining variables.) 

If minimum risk principles are used to generate wm = {nl(n + im)) ,  then, as 
in Equation 3, regression weights can be obtained using 

where the subscript WSR-cfa-m refers to weighted structural regression for cfa 
models with m factors. Other principles could of course be used to estimate w 
in the context of further varieties of weighted structural regression. 

Consistent with Equation 5 above, :ome algebraic manipulation based on 
a (1 I k) row partitioning of the matrix Fm, as in Equation 18 above, reveals a 
representation equivalent to Equation 21 as 

* A  n A " "  

(22) - B ,.,, - =.,, a ,  + Y,PF: + U>))-'(. ~ . ' , u . m  + ymFxfy). 
A A 

Th,is makes explicit the ridge form, since when m = 0, the terms FxF1,pnd 
Fxfy drop out, and im becomes a scalar multiplier for the diagonal matrix UU2. 

The essential assumption for Case I1 is that the population C can be 
approximated using a (low rank) common factor structure, an assumption that 
must be distinguished from one that says the population X has exact common 
factor form and the sample is intended to approximate this structure. 
Equivalently, since for a sufficient number of factors any X can be taken to have 
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common factor form (although generally, for a non-identifiable cfa model), 
one could say that the use of a low rank cfa model for Case I1 involves 
specifying too few factors, or equivalently, too few model parameters; but as 
we shall see in the forthcoming numerical study, too few parameters for one 
purpose may be a reasonable number for another purpose. 

Examination of Equation 18 shows that as ;m gets larger and larger in 
relation to n, then wm approaches zero, resulting ultimately in a covariance 
e~t imator$~~- , .~  that derives wholly from them-factor cfa representation. That 
is, for a specified value of m < p, say A, tcs-,.m in Equation 18 alters t by 
shrinking the smallest p - A  eigenvalues of the rescaled covariance matrix 
toward their average value,im, leaving the largest eigenvalues unchanged. The 
eigenvalues of interest can be seen to have the general form 

If Equations 18 and 21 are used for regression estimation, but the m-factor 
model is poorly supported by extant data, then one sees that $cs-,-m converges 
toward the standard model-free estimator,$, as wm -r 1 .O. Also, noting that the 
cfa model in this context nese2sarily fits any 2 perfectly form = p - 1, we see 
that as m -. p - 1, the term F,F', + i m ~ 2  necessarily approaches$, so that the 
convex sum in Equation 18 necessarily approachese. In either case, wm -. 1 .O, 
or m -.p - 1, it is thus clear that WSR estimators will tend toward standard OLS 
estimators (assuming the appropriate regular inverses exist). 

Theoretical work suggests that WSR results based on minimizing risk will 
typically, though not necessarily, resemble those of OLS when sample sizes 
are suficiently large. This is because the procedures for estimating ym from 
data tend to ensure that for fixed p, as n increases im will not increase 
systematically and so wm = nl(n + $m) -, 1.0 as n -. m. Yet, as seems desirable, 
the new methods generally give an advantage to the investigator whose prior 
knowledge is greatest in situations where sample sizes are limited, or when 
pln is relatively large. 

For any covariance structure model that might be used with real data, not 
just common factor forms, the weighted structural regression problem can be 
described as that of choosing a parsimonious structural model that is likely to 
be supported by data. When the model is supported by extant data, in the sense 
that w + 0, then covariance estimators based on the model will tend to derive 
from parameter estimates associated with the model. ' In our final section we 
discuss such matters further. 
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Provided that the estimator of w, the weightingcoefficient, is appropriately 
generated, and conceiving of the convex sum estimator in Equation 18 as a 
counterpart of the mode of Chen's (1979, p. 236) derived posterior distribution 
f o r i ,  we can write ageneral expression for the sampling distribution of sample 
WSR coefficients. Although his theory was more general, and was derived 
explicitly from Bayesian arguments, Chen's theorem 5.1 (p. 241) and his 
ybsequent analysis can be used directly to secure the case for saying 
6 WSR-CJU-~ has a multivariate t-distribution. Using Chen7s analysis, the 
covariance matrix of the vector of regression estimators can be estimated as 

where hu denotes the reciprocal of the first diagonal term in the invetse of the 
join! covariance estimator, f c5 cfa m .  Thus for any element in (3 , ,Rcf,m. 

say bW~R-cfaq, the estimated standard error can be computed as 

/Z A a A 
I : ?  

s.e.(b,,.cfa.]> = diag[{hUl(n + ~ , ) )~ ; . ( : f~ .~  I,] 

the square root of the j'h diagonal element of the matrix in braces. 
The sampling theory underlying these expressions is based on the same 

multivariate normal assumptions as given previously. The theory associated 
with the construction of9c3-,.rn should be regarded as approximate of course, 
particularly since in the general case, where m > 0, the analytical solution for 
wm is not available. Nevertheless, several bootstrap trials with a number of data 
sets lend support to the validity of these equations. We shall present some 
results below that are suggestive of the usefulness of Equation 24. 

The choice of m and the relative sizes of n and y are clearly pivotal; for 
different values of m and y or w, WSR can be seen to include OLS, a general 
form of ridge regression, as well as reduced rank regression as special cases. 
In some instances of course we are suggesting that the scalar w is prespecified, 
as say zero or unity, but we have concentrated on using WSR principles for 
estimating w where the structural model used has common factor form. Recent 
literature of covariance structure estimation implies that ather choices for w 
may be reasonable to consider. Indeed, we use and discuss one other form in 
our subsequent numerical studies. In the next section we present a method for 
scaling the covariance estimator, with a focus on small sample applications. 

Scaling the Joint Predictor-Criterion Covariance Matrix and Choosing a 
Common Factor Method 

An important role of covariance matrix rescaling in this context is that 
when basedon appropriate uniqueness variance estimators,covariance matrices 
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of the form of Equation 18 can be used to make the structural analysis scale- 
free. This means that WSR estimators that use uniqueness rescaling can, like 
their common factor counterparts, be described as invariant with respect to 
arbitrary linear rescalings of the original covariance matrix. It is interesting to 
note that nearly all previously developed non-OLS formsof multiple regression 
are generally not invariant to changes in predictor rescalings (cf. Smith & 
Campbell, 1980, as well as the published commentaries). 

Given the foregoing correspondences between common factor analysis 
and regression it is natural to consider linkages between these methods and 
Guttman's (1953) image analysis. Further, noting the role of rescaling in this 
framework, Harris' (1962) developments of Rao-Guttman relationships are 
also of special interest. Given these articles, however, the key to making 
further progress seemed to lie in finding an effective way to rescale the joint 
predictor-criterion covariance matrix when sample size is relatively small in 
relation top .  

Muirhead (1985), starting from the same multinormality assumption used 
earlier, uses risk minimization principles to produce specialized procedures for 
improving sample estimates of the ratio M = R21(1 - R'), the ratio of the 
population squared multiple correlation coefficient to its complement. This 
ratio is essentially acorrelation-based signal-to-noise ratio that can be generated 
for each variable separately in the context of a system of stochastic or random 
variables. Specifically, Muirhead (1985, p. 924, Equation 8) presented an 
estimator of this ratio of the form 

(25) M" = a,$ - a,, 

for M = smcl(1 - smc), a ,  = (n - p - 4)l(n + 1) and a 2  = @ - l)(n - p - 4)l(n + 1) 
(n - p  - 2), where smc is the sample estimate ofR2. He showed that M* is optimal 
in the sense that no other linear estimator of M dominates this one in terms of 
squared error loss. Since M' could be negative for some values of a ,  and a,, 
even though population values of M cannot be negative, Muirhead pointed out 
that negative estimates of M' should be reset to zero. 

Because Muirhead's (1985) linear estimator can be used to correct 
estimates of various different functions of smc, consistent with minimizing a 
tractable form of squared quadratic loss, this estimator provides an appealing 
basis in the present context for constructing an estimate of the diagonal 
rescaling matrix D2. There is a well-established basis in the literature of factor 
analysis (cf. Ciuttman, 1956; Joreskog, 1969) for using compl~ments  of sample 
smcs as a basis for estimating uniqueness variances. However, when samples 
are relatively small, or the ratiopln is relatively large, then the well-known bias 
of sample smcs appears to require correction. 
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Using Muirhead's (1985) estimator Equation 25 in the context of image 
factor analysis, the uniqueness diagonal U2 can be estimated as a function of 
the sample smcs. Specifically, algebraic manipulation of M yields an 
alternative estimator of U2 consistent with Muirhead's Equation 25; i t  is 

(26) S*, = [alD{smcl(l - smc)) + (1 - a,)I]-'. 

where D(smcl(1 - srnc)) is a diagonal matrix whose non-zero entries consist of 
each variate's sample squared multiple correlation with all other variates in the 
set, divided by its complement. The a, and a, are the same as given following 
Equation 25. The rescaling matrix for R,, the sample correlation matrix, is thus 
8 ' - I  = [alD{smc1(l - smc)) + (1  - a2)I]"2. Following Harris (1962), as well as 
Joreskog (1969), $'-'R$'-' can be used for eigenanalysis. Since for fixed p ,  
a, -, 1 and a, -, 0 as n -+ w, this expression converges to that of Harris' 
S-IR$-~ as the ratio nip -+ 30. Consistent with Muirhead's recommendations 
concerning negative values of the estimate M*, when estimates in Equation 26 
are smaller than unity, they should be set to unity. 

Given the foregoing, i t  appears that an effective common factor method for 
use in many regression applications, and perhaps for other small sample 
applications as well, is to start from the sample correlation matrix R, and 
compute 9'-'R$*-' from Equation 26, then generate the m largest eigenvalues 
Am and corresponding eigenvectorsQmof this matrix. Thus, the (untransformed) 
matrix of common factor coefficients can be written as 

a form that can be used in Equation 18  to provide a basis for WSR estimation. 
As nlp -, the expression Equation 27 converges to the factor coefficients 
matrix given by Joreskog (1969) in his version of image factor analysis. This 
is the form of cfa that is employed numerically with four different regression 
methods in the next section. 

Since Joreskog (I 969) has shown image factor analysis to be scale free, this 
feature is retained for Equation 27 as long as all estimates in Equantion 26 
e x ~ e e d  unity. If the latter condition prevails, the row-rescaled form F;-cfi~m = 
DsFc,a-m, for Ds the diagonal matrix of standard deviations of the original 
variables, represents in obvious notation the common factor coefficients 
matrix that would be obtained if the analysis had begun from the sample 
covariance matrix instead of being generated from the matrix R, of sample 
correlations. The basic arguments are given in Joreskog (1969). 

The value of scale freeness or scale separability is distinctive. It means that 
either correlation or covariance metric can be used for WSR estimation 
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whenever scale free methods are used for estimating covariance structures; 
conversion between standardized and raw score weights thus takes the same 
form for WSR as for OLS weights. Standardized weights are usually found to 
be more easily interpretable, whereas raw score weights are more conducive to 
comparison across independent samples with the same variables. Neither of 
these virtues should be ignored. 

In the next section we study the merits and demerits of the various 
alternative regression estimators with real data. 

A Numerical Study of Alternative WSR Estimators 

In this section we present and discuss selected results of a bootstrapping 
study that provides numerical comparisons among six different forms of WSR 
estimation for a selected set of data. The forms of regression analysis used 
were: OLS, three versions of WSR based on minimizing risk, an alternative 
convex sum procedure, labeled GFI, and reduced rank regression. The GFI 
procedure was prompted by consideration of one of the goodnees of fit indices 
recommended by Joreskog and Sorbom (1986) in the general context of 
covariance structure analysis. These methods are described below. 

Data and Methods 

The data set used for bootstrapping and simulation is taken from Gunst and 
Mason (1980, p. 367) and represents body measurements of n = 33 female 
applicants for positions as police trainees. The criterion measure was defined 
as applicants' heights, and the predictors were seven body measures such as 
arm, foot and leg length. 

Appendix B contains the product-moment correlation matrix for this set of 
data, as well as its eigenvalues, and the squared multiple correlation coefficients, 
for each variable with all seven others. 

Since bootstrap procedures (tacitly) take the initial data system as defining 
a fixed population, its metric can be chosen arbitrarily. In this study all 
variables were scaled initially toz-score, that is, correlation metric, to make the 
various bootstrap weight coefficients and standard errors generally comparable 
with one another. All sample regression coefficients were then computed in 
so-called raw metric to make them comparable across samples. 

Two different methods were used for bootstrapping: The first used a 
conventional bootstrap procedure, starting from the available raw data matrix, 
as given in Gunst and Mason (1980, p. 363); the second was based on the 
normal bootstrap, where data vectors were simulated to be stochastically 
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consistent with the Gunst-Mason covariance (i.e., correlation) matrix (cf. 
Efron & Tibshirani, 1986). 

Conventional Bootstrap 

In the case of the conventional bootstrap method each bootstrap sample, 
of size n = 33, was generated by sampling randomly with replacement from the 
original matrix of observation vectors. One hundred such bootstrap samples 
were obtained, and each of these samples was then used to generate regression 
coefficients using six different methods, as described below. 

Recognizing that most empirical prediction work uses somewhat larger 
samples, it was decided to conduct a second bootstrapping study to examine 
how the same regression methods would compare using a larger sample size. 
For this second set of analyses, the same Gunst-Mason prediction problem was 
utilized on the basis of what Efron and Tibshirani (1986) call the normal 
bootstrap. 

Normal Bootstrap 

For this procedure, the eight variable Gunst-Mason population covariance 
(here, correlation) matrix Rpop was used as a starting point to simulate 
observation vectors using the following procedure: Given Rpop, a common 
factor analysis was employed (using the same image-factor methods as 
described above) with m =p  - 1 common factors. This ensured that the derived 
matrix of factor coefficients Fp, of orderp x @ - I), would exactly reproduce 
all off-diagonals of Rpop. (Lack of uniqueness of this Fp is of no consequence 
here.) From Fp, a diagonal matrix was constructed as DU2 = Rpop - FpFL. Given 
these population-based matrices, 100 normal bootstrap samples were created, 
each of size n = 100, using the construction XS = XcFIp + XUDU. Entries in the 
matrices Xc and Xu, of order n x m and n x p respectively, were computer- 
generated using a pseudo random normal generator, that is,xij - iidN(0,l). Use 
of this process ensured that simulated observation vectors associated with each 
sample data matrix Xs would follow a multivariate normal distribution, that is, 
Row(Xs), - MN(O,Rp,). 

For each combination of an estimation method and a bootstrap sample 
regression weights were compared with their full sample OLS counterparts as 
described in the first footnote in Table 1. Three evaluative criteria were used 
to compare regression methods. The first two were: average meanAsquared 
errors of sample versus population weights, computed as MSE = Avg(Pl - @o,,>'; 

and averages of esJimable part: of predi~tive~mean squared errors, computed 
as EPMSE = Avg(P, - Pols)'Rpop(fi, - Pols). Here fil represents the weights for each 
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combination of bootstrap sample and method, Po,s denotes the full sample 
(bootstrap population) regression weights, and Rpop references the population 
covariance (here, correlation) matrix. MSE is a conventional measure of how 
well sample weights estimate their population counterparts. The logic of the 
PMSE is that repeated use o f j s  from samples in place o f j  from the population 
to predicty will result in a mean squared prediction error, per prediction, of 02 

+ E(EPMSE) where the latter term is the expected value of EPMSE and a2 
represents the residual population variance (Browne, 1975). 

A third criterion was computed to assess the quality of the criterion score 
estimators associated with each regression method. For this criterion, each set 
of original bootstrap sample weights were used for bootstrap cross-validation. 
For each sample, initial bootstrap weights were applied to the predictor variates 
in the corresponding bootstrap holdout sample to compute predicted y scores, 
that is, i s .  Each holdout sample consisted of the rows not selected with 
replacement for the corresponding bootstrap sample; on average approximately 
63% of the rows of the bootstrap population are used in the bootstrap sample 
leaving 37% in the holdout sample (cf. Efron, 1983). Thus, average squared 
differences of the form A v g b  -j)' were computed for each method for every 
sample and then averaged across bootstrap samples. This method apparently 
has not often been used in the past. 

For the normal bootstrap study, the same evaluative criteria and methods 
were employed as described above. However, to obtain the cross-validation 
evaluative indices A v g b  -;)'for the normal bootstrap, an additional independent 
random sample (of size 2 x p = 16) was constructed to parallel each normal 
bootstrap sample; these were used for cross-validation purposes. Thus, in the 
case of the second bootstrapping experiment, A v g b  - j )2  was computed across 
100 cross-validations based on these independent samples. 

The methods used to compute weights for each bootstrap sample were the 
following: 

Method 1: OLS 

Ordinary Least Squares regression, where the (raw score) weights were 
computed using an expression of the form of Equation 3 for each bootstrap 
sample; 

Method 2: WSR-RDG 

The W SR version of ridge regression, obtained using expression Equation 
16, with m set at zero, and Equation 21 used to generate weights. Use of this 
method corresponds to choosing a minimum risk estimate of the population 
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covariance matrix and using this covariance matrix to provide a closed-form 
solution for the corresponding regression weights in the context of inverse- 
based rescaling; thus, like all methods used here, WSR-RDG is properly 
described as scale free; 

Method 3: WSR-MR 

The third method may be declared to be the conventional cfa version of 
WSR based on minimizing risk. This method uses expression Equation 18 
with wm = nl(n + im) to generate the covariance estimator with the common 
factor method based on Equation 27, for m = 1, 2, 3 and 4. Equation 21 was 
used in each case to generate regression weights; this, and the two methods 
below can be described as convex sum methods since for them w is generally 
intermediate between zero and unity unlike OLS and RedRk; 

Method 4: WSR-MR2 

This method used a modified WSR-MR method for which wm = nl(n + 2'jm) 
in the convex sum Equation 18, but is otherwise equivalent to Method 3. This 
choice was motivated by examination of the upper limit of equation 10, the use 
of which yields a sample covariance estimator that should generally be no 
worse than the conventional mle estimator, and generally better to the extent 
to which the m-factor model is reasonable for the population; 

Method 5: GFI 

This method was based on the choice 1 - wJs = gfi = 1 - (d,ld,){tr 
- 1)~1tr@: where (d,ld,), a correction term based on degrees 

of freedom, i s p b  + I)/{@ - m)' + p - m + 2) in this context (cf. Joreskog & 
Sorbom, 1986. p. 1.40, exp. AGFI); f 3-,-m represents the model-based cfa 
estimate derived from Equations 18 and 27, and2 is the model-free covariance 
estimator. Thus w , ~  = (d,ld,){tr@:-, $ - ~)'ltr@',-$)'). Although wJS has 
a general upper bound of unity, theoretically it can attain negative values for 
some covariance structure models - although this eventuality will virtually 
never occur with sufficiently small values of the ratio mlp; 

Method 6: RedRk 

This is the regression method resulting from setting the coefficient w = 0 
in Equation 18  and using m = 1,2 ,3  or 4, to generate the population covariance 
estimator which was then used to compute weights as in Equation 21. 

114 MULTIVARIATE BEHAVIORAL RESEARCH 

D
ow

nl
oa

de
d 

by
 [

74
.7

0.
24

6.
63

] 
at

 1
0:

38
 3

0 
Ju

ne
 2

01
1 



R. Pruzek and G. Lepak 

Although this method is new in the sense that it was based on the common 
factor coefficients defined in Equation 27, it is of the same form as that given 
in Lawley and Maxwell (1973). 

Bootstrap Results 

Results for the data set are summarized in Tables 1 through 4, where 
attention is focused on prediction of the first variate from all others. We recall 
however that these methods are all symmetric in that the same methods could 
be (and were in fact) used to summarize regression results for each variate, as 
if it were the criterion variable with all others as predictors. Subject-matter 
interpretations are ignored here although the reader is encouraged to examine 
the original source for these details. 

Table 1 (next page) presents selected sets of average values and standard 
deviations of the weights for each set of bootstrap samples. The table also 
provides in the last four rows the full sample counterparts of the bootstrap 
values for two of the methods, OLS and WSR-MR2-2 (WSR-MR2 with m = 
2), the standard method and the generally best cfa-based WSR method; 
equation 24 was used to estimate standard errors for the weighted structural 
regression estimators. Table 2 presents the MSE, PMSE and cross-validation 
badness of fit indices for the data set. 

From Table 1, in which bootstrap results are presented only for the case m 
= 2 for the cfa-based methods, it can be seen that weights obtained from the 
alternative regression methods are similar to one another, and that the standard 
errors tended to be largest for OLS and smallest for the reduced rank method. 
It is also notable that the two vectors of weights computed from the full sample 
are generally comparable with their bootstrap counterparts above in rows one 
and four. Comparing bootstrap results with those computed by formula for the 
bootstrap population, standard errors for both methods are somewhat less 
similar than are means, but this is to be expected for secondary as distinct from 
primary statistics. Non-OLS weights appear considerably less erratic across 
bootstrap samples than those of the OLS method. Also, the evidence suggests 
that bootstrap standard errors are slightly larger than those computed by 
formula for OLS from full samples. 

It is interesting to note that when using OLS methods, only variables 2 and 
7 appear to be the established significant predictor variables in the sense that 
their average bootstrap weights divided by their estimated standard errors 
exceeded 2.5 (with reference to conventional t-statistic standards). However, 
using, say the MinRisk Ridge method, or the MR2-2 method, two additional 
variables move into the picture in terms of nominally significant t's. 
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Table 1 
Bootstrap Averaces-and Standard Errors of Recression Wei~hts Results for 

Variables. n = 33. D = 8 

Averages for 100 Samples 
Independent Variable Number (Criterion is Variable 1) 

Method 

OLS 
WSR-RDG 
WSR-MR 
WSR-MR2 
GFI 
RedRk 

Standard Errors for I00 Samples 
Independent Variable Number (Criterion is Variable 1) 

Method 2 3 4 5 6 7 8 row avg - - - - - - - -  
OLS ,071 .I25 .1 18 ,128 .I63 ,140 .I06 .I22 
WSR-RDG .048 .078 .062 ,072 .090 ,060 .065 ,068 
WSR-MR ,064 .078 .070 .081 .I 11 ,086 .077 ,081 
WSR-MR2 ,066 ,062 ,059 ,068 ,096 ,076 ,070 .07 1 
GFI ,069 ,055 ,057 ,063 .090 ,074 ,068 ,068 
RedRk .I00 ,037 ,061 ,054 .079 .093 .067 .070 

Weights and Standard Errors for Full Sampleb 
Vector of Multiple Regression Weights 

Method 2 3 4 5 6 7 8 smc'sL 
- - - - - - - - 

OLS .439 -.084 .I03 .I57 .I14 ,464 .I19 .892 
WSR-MR2-2 .368 ,004 ,152 ,101 .I20 ,384 ,138 ,886 

Corresponding Multiple Regression Standard Errors 

OLS ,074 .I05 ,110 .I01 ,131 ,141 .OX7 
WSR-MR2-2 .058 ,078 ,074 ,070 ,085 .095 ,061 

Note. Legend for Methods - OLS is Ord. Least Squares, WSR-RDG is Min. Risk Ridge, 
WSR-MR is Min. Risk Regression, WSR-MR2 is Mod. Min. Risk, GFI is Weighted Str. 
Regression for GFI from Joreskog & Sorbom, 1986, RedRk is Red. Rank Reg. 
" Each average based on 100 bootstrap samples drawn with replacement from full sample; 
original data (Gunst & Mason, 1980, p. 367) were transformed to z-score metric to facilitate 
comparisons. Last four rows present formula-based values of the vector of fis and 
corresponding standard errors computed from full sample using two Methods: OLS and 
WSR-MR2 with m = 2. ' The first smc is the uncorrected squared multiple correlation 
associated with the OLS vector to its left; the second smc is the analog of the OLS smc, 
computed using the vector to its left. 
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Table 2 (next page) presents results for four different values of m in the case 
of the cfa-based WSR methods and shows that for these data the best result for 
each m is in most cases a convex sum method, regardless of which badness of 
fit index is used for judgment. The best method in recovering full sample, that 
is, population (OLS) weights, tended to be WSR-MR2. Study of the MSE's 
in Table 2 suggests that despite the bias of the non-OLS WSR weights in Table 
1 the reductions in sampling variability more than compensated for the 
apparent bias. The ridge method, WSR-RDG, worked well in terms of 
prediction mean squared error yielding fit statistics that were generally 
comparable to the best cfa-based convex sum method. All the non-OLS 
methods produced relatively low cross-validation squared errors. The RedRk 
method is so poor as to be wholly unsatisfactory fo rm = 1, but for every fit 
criterion it achieves an advantage over OLS for m = 3 and 4. 

Although not presented here, standard deviations of the MSE's, EPMSE's, 
and Cross-Validation Mean Squared Errors were, like the means, smaller for 
non-OLS regression methods, generally 30  to 70% smaller in the case of the 
conventional bootstrapping exercise, and 10 to 30% smaller in the case of the 
larger n for the normal bootstrap studies. Also not presented, but clear from 
the summary statistics, was the finding that RedRk regression weights were on 
average distinctly different from the OLS bootstrap population weights, 
particularly for small m. This of course suggests a risk of possibly substantial 
bias for RedRk weights. 

Table 3 is of the same form as Table 2 except the entries in Table 3 are 
averages based on 100 normal bootstrap samples, each of size n = 100. Again, 
four different choices were used form, the number of common factors in the 
model-based covariance estimator in Equation 18. 

It can be seen from Table 3 that regression results based on the ridge 
method and the convex sum covariance estimators, MR2 especially, are again 
generally better than those based on OLS regression. However, with the larger 
sample size of n = 100 sample data is routinely able to support the estimation 
of more common factors with the consequence that the best results tend to be 
associated with the largest values of m, specifically, m = 3 or 4. The smallest 
mean EPMSE's amd MSE7s are notably smaller than their OLS counterparts, 
as much as 40% smaller for MSE's, 25% smaller for EPMSE's. The indices 
of criterion score fit, Cross-Validation Mean Squared Error, are less sensitive 
indicators of differences among the regression methods, although these too 
favor the same methods that yield the smallest EPMSE's, especially MR2. The 
GFI method appears to work somewhat better for n = 100 than for n = 33, but 
only for the larger values of m; even the MR2 method does poorly with m = 1 
and 2, depending on the evaluative criterion examined. The RedRk method 
worked very poorly form = 1 and 2, but improved to the point of being almost 
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Table 2 
Bootstra~ Results for Gunst-Mason (1980) Data. Body Measurement Variables, 
n = 33. D 8 - - .  

Summary Statistics for Six Regression Coefficient Estimatorsa 

Mean Squared Errors ps Pred. Mean Squared Errors 
Method" 

OLS .I07 .I10 .I11 .088 .034 .034 .033 .030 
WSR-RDG .063 .061 .061 .051 .023 .023 .023 .019 

WSR-MR .057 .059 .060 .050 .026 .023 .022 .020 
WSR-MR2 .066 .059 .055 .045 .036 .025 .022 .019 
GFI .083 .063 .057 .051 .051 .028 .023 .021 
RedRk .266 .I20 .084 .056 .I93 .063 .034 .022 

Cross-Valid. Mean Squared Errorsd 
Method 

OLS .019 .019 .029 .018 
WSR-RDG .015 .015 .024 .014 

WSR-MR .016 .016 .025 .016 
WSR-MR2 .016 .016 .024 .015 
GFI .017 .016 .024 .015 
RedRk .029 .018 .024 .014 

a Each MSE and corresponding table entry is based on 100 conventional bootstrap samples 
drawn with replacement as described in the test; MSE represents the average of squared 
differences between sample bootstrap weights and the full sample OLS weights. hPred ic t i~e  
mean squared errors are actually estimable parts of predictive mean squared errors (J -y)' 
(all would be incremented by a constant to equal actual PMSEs, cf. Browne, 1975). 'Because 
each set of bootstrap runs was completed for a specified value of m, OLS and Ridge statistics 
are duplicated for each m; m is not relevant to these two statistics, but the variation in 
averages indiates the degree of variability in bootstrap means. %All crossvalidation averages 
are based on bootstrap samplcs versus their holdout counterparts as described in the text. 
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Table 3 
Bootstrap Results for Funst-Mason (1980) Data. Body Measurement Variables, 
n = 100.p - - 8 

Summary Statistics for Six Regression Coefficient Estimatorsa 

Mean Squared Errors ps Pred. Mean Squared Errors 
Method 

OLS .025 .027 .026 .027 
WSR-RDG .020 .021 .020 .022 

m=l m=2 m=3 m=4 

WSR-MR .020 .020 .017 .019 
WSR-MR2 .020 .018 .016 .017 
GFI .047 .027 .018 .016 
RedRk .I54 .052 .021 .017 

Cross-Valid. Mean Squared Errors 
Method 

OLS .015 .015 .014 .015 
WSR-RDG .015 ,015 .014 .015 

WSR-MR .015 .015 .014 .015 
WSR-MR2 .016 .015 .014 .014 
GFI .018 .016 .014 .014 
RedRk .029 .018 .014 .014 

a Each MSE and corresponding entry in  this table is based on 100 normal bootstrap 
samples as described in the text. 

as good as the best convex sum methods form = 4. The ridge method continued 
to be superior to OLS, but did not fare as well as the better convex sum methods 
for the larger value of n. 

Comparing the two sets of bootstrap results, Table 2 versus Table 3, some 
systematic differences can be found. In the case of results for the conventional 
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bootstrap, where n = 33, the relative advantage in terms of both sampling 
variability and cross-validation accuracy of MR and MR2 methods over OLS 
regression seems essentially not to depend on the choice of m, the number of 
common factors, for the cfa method used. The same can be said of these 
methods for the normal bootstrap, for n = 100, only if the cases m = 1 or 2 are 
excluded. Of course a major difference between the two bootstrapping 
methods is that the first uses the empirical distribution of the given observed 
data as the starting point; the second imposes the concept of multivariate 
normal sampling. It is possible that some of the differences observed between 
Tables 2 and 3 have more to do with this difference than with the differences 
in n's (although the observed Gunst-Mason data appeared generally well- 
behaved; marginals were generally symmetric, and bivariateplots exhibited no 
obvious cuwilinearity). 

Relative invariance to the choice of m seems important since such a finding 
is suggestive of model robustness. It is most desirable that adaptive procedures 
generally take advantage of the information in the structural model to the extent 
to which it is present, to downweight the structural (cfa) model if it doesn't fit 
well, and weight it more heavily if the data support the structural model. To 
the extent that this feature characterizes adaptive WSR methods it bodes well 
in those common situations where the investigator has only vague or imperfect 
knowledge of what structural model to employ, where the use of regression is 
largely exploratory in form. 

It has been useful to learn that relatively simple structural model-based 
methods can work effectively to make linear predictions with real data. 
Compared with mainstream OLS methods, the new regression methods 
yielded systematically more stable weights, and better independent sample 
criterion score estimation, for both bootstrapping studies. Despite the fact that 
target weights for each bootstrap sample were the full sample (bootstrap 
population) OLS weights for the MSE and PMSE criteria, it is interesting that 
non-OLS procedures have worked best, often substantially so, in recovering 
these weights for each problem. Also, although more studies are needed to 
assess the appropriateness of Equation 24 for estimating weight standard errors 
for convex sum methods, this expression worked essentially as well for MR, 
and MR2 as did the theoretically-based expression for OLS weight standard 
errors. 

Table 4 displays averages and standard deviations of the goodness of f i t  
criteria, each of the form 1 - w, for the methods that were summarized in Tables 
2 and 3. As can be seen from Table 4, weights given to the structural model 
covariance estimator tend to be substantially larger for the GFI method than for 
the WSR-MR and WSR-MR2 convex sum methods. However, it is evident 
that a better overall fit, in terms of the goodness of fit index which controls the 
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Table 4 
Goodness of Fit Summary for Bootstrappin? Studya. Gunst-Mason (1980) 
DLda 

n = 33 (conventional bootstrap) 

Method WSR-MR Method WSR-MR2 Method GFI 

rn Avg-gfi (sd) Avg-gfi (sd) Avg-gfi (sd) 
- 

n = 100 (normal bootstrap) 

Method WSR-MR Method WSR-MR2 Method GFI 

m Avg-gfi (sd) Avg-gfi (sd) Avg-gfi (sd) 

a Each of the Avg-gfi indices is based on an average across 100 bootstrap samples of a 
goodness of fit term of the form 1 - w for a particular convex sum form of WSR; the value 
in parenthesis is the corresponding standard deviation. Each combination of Method and rn 
is associated with a set of statistics in Tables 2 and 3. 

weighting in the convex sum for Equation 18, does not necessarily imply an 
advantage in terms of other fit criteria such as MSE or PMSE. Of course, the 
WSR-MR2 method yields a goodness of fit index which is always larger, on 
average, than the WSR-MR method. 

In many cfa-based WSR regression applications it would seem reasonable 
to recommend a screeplot of the eigenvalues of the matrixg*-'R$*-', to choose 
the number of factors for the cfa model, principally on the basis of where the 
first major break occurs, reading left-to-right in the plot. One might also pay 
special attention to the residual covariances, or more likely correlations, 
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between the criterion of interest and the predictors, for each of several values 
of m. Aplot of the sums of squares of such residual correlations against rn could 
also provide evidence of the appropriate number of factors. 

Although the procedure was too computationally intensive to be used for 
all bootstrap samples, Bayesian structural regression (BSR) weights (Chen, 
1979) were generated for each of our initial samples and some of the findings 
can be reported. The main point was that the value of the goodness of model 
fit, (1 - w )  in current notation, exceeded that of even the GFI procedure, which 
as noted in Table4, was in every case studied larger than that of either the WSR- 
MR or modified WSR-MR method. Such findings suggest that the BSR 
method will generally yield MSE's, PMSE's and Cross-Validation fit indices 
somewhere between those of the GFI and the reduced rank method. Further 
evidence on this matter would be useful. 

Rabinowitz (1990) recently completed a study that demonstrates similar 
findings for four other population systems. He employed the same regression 
methods as were used here. Rabinowitz used normal bootstrap procedures, 
systematically varying rn, number of factors, and n, sample size. He found 
systematic and distinctive advantages for the adaptive convex sum regression 
methods, results that essentially paralleled those reported above. For small 
sample sizes especially, results strongly favored adaptive WSR methods; but 
even for samples as large as n = 140 with 7 to 11 predictors, the OLS results 
were always systematically worse than the best regression methods based on 
convex sum procedures. 

For those who are interested, we have workedout other example scomparable 
to the applications above, and also have available the principal results of 
Rabinowitz (1990). These results and the software to implement adaptive 
WSR (and bootstrapping) procedures are available from the first author. 

Discussion and Conclusions 

Despite the rich variety of methods available to support applied linear 
prediction, it has been a major premise of this work that there are distinctive 
new ways in which one might approach prediction analysis, some of which 
have the potential to improve, perhaps substantially, thegeneralizability of the 
predictive equations we derive from our data, as well as the interpretability of 
conclusions. 

The principal aim of this article has been to develop a new approach to 
regression that accounts for variable unreliability and permits an analyst to 
incorporate psychometric knowledge or information into analysis. As a 
general class WSR methods have been shown to include OLS, ridge and 
reduced rank methods as special cases within its framework. 
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Compared to other forms of regression methodology, adaptive forms of 
weighted structural regression differ in a fundamental way: they provide a 
flexible mechanism with which the analyst can advance a prior structural 
model and incorporate i t  into analysis; however, for any model selected, these 
methods use the structural information only to the extent that the prior model 
is supported by extant data. If data are not consistent with the model the 
analysis automatically tends to discount it, moving toward the model-free 
situation, namely, OLS regression. 

The specific procedure discussed above for adaptive weighting in the 
context of Equation 18 assumes a multivariate normal sampling process, 
however, preliminary sensitivity analyses suggest that adaptive WSR methods 
are reasonably robust to at least some violations of this assumption. Chen also 
suggests that his closely related methods may be robust to violations of 
distributional assumptions and more resistant than OLS methods to outliers. 
Given the reciprocity relationships inherent in systems that derive from 
simultaneous prediction of each variable from all others, there also seems to be 
special potential in this methodology for estimating missing data. 

Although we have focused on WSR methods using the assumption that 
predictors are random or stochastic, many applications of regression include 
both fixed and random predictors. In those applications where some predictor 
variables are regarded as fixed and others random, various approaches to 
partialing out the fixed or design variates will generally be warranted when 
applying adaptive WSR methods. 

Many articles and monographs have been written to expound on Bayesian 
regression estimation, but most (cf. Laughlin, 1979, and Vinod, 1982) have 
aimed directly at incorporating priors on betas, that is, the weights themselves, 
rather than on predictor-criterion covariances or correlations. Adaptive WSR 
methods seem more natural and easier to use since no burden is placed on the 
investigator to provide prior information about complex multiple-partial 
parameters, the betas. Rather, one need only provide information about 
predictor-criterion covariances, information that may be either generic or 
specific. 

If an investigator is in a position to advance a parsimonious structural 
model which in turn is strongly supported by data, then the results can be 
interpreted in the context of the relatively small number of related parameter 
estimates that are associated with the structural model. Moreover, if  the prior 
model has been based on a meaningful theoretical structure, regression 
estimates derived to depend on this structure should be meaningful to the 
investigator. In principle, the new methods thus reinforce the use of relevant 
prior information or knowledge by enhancing the interpretability and 
generalizability of results. 
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Just as importantly, if one's prior knowledge is in fact vague or diffuse, one 
can use adaptive WSR methods that account for this vagueness. Exploratory 
common factor models, the focus of this article, serve just this purpose since 
their use generally entails the assumption of vague prior knowledge. In 
relation to recently developed structural equation systems, those based on 
highly general modeling software, adaptive WSR methods seem less likely to 
force imputation of knowledge where it does not exist, or to induce model 
fabrication in situations where the investigation is genuinely exploratory. 

Although nearly every applied scientist has been sensitized to statistical 
inferential thinking, most pay less heed to principles of domain sampling or 
psychometric inference. It seems, however, that neither form of inference can 
be ignored with impunity. Because some arbitrariness seems inevitable 
whenever regressors are selected from a larger domain of possible variables, 
it seems important to make this process explicit. Through WSR methodology 
it seems possible that both inferential concepts can be accommodated in a 
single, unified approach to regression. As shown above, adaptive WSR 
methods can account for measurement errors, they can be made to be scale free, 
and their algorithms generally do not break down even when there is an 
abundance of predictors. 

Many authors have argued that one can expect routinely to loose little 
predictive accuracy if one just weights the - assumedly unreliable - 
predictors equally, and forgets about the complexities. It is easy to demonstrate 
that this can be poor advice, however, depending on the nature and extent of 
interdependencies among the various pairs of predictors and between them and 
the criterion variable. Such a cavalier attitude seems difficult to justify once 
convenient, easy-to-use software is available to facilitate adaptive forms of 
structural regression. Once measurement error has been taken into account, the 
details concerning structure of joint predictor-criterion relations may be of 
value not only for developing future hypotheses about how best to describe the 
variables, but also for estimating the upper limits to predictability of various 
criteria. 

Equal or simple weighting has seemed like a pleasing idea to many 
students of regression methodology, and is compelling when it can be made to 
work (cf. Green, 1977). However, the question is: Given a large number of 
predictors, each of whose predictive usefulness is in doubt, how does one 
decide which ones to weight say, one versus zero, or differentially ? Pruzek and 
Frederick (1978) showed that the choice of m = 1,  with a reduced rank method, 
is roughly consistent with the use of equal weights, or perhaps simple zero-one 
weights. Yet, as shown above, this choice is demonstrably inferior to several 
other possibilities for some data systems. It is always partly an empirical 
question as to whether simple or more complicated weighting systems are 
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desirable. Although several varieties of OLS regression, including several 
forms of stepwise and all subset methodology have been developed, none of 
these methods account in any explicit way for measurement errors or for prior 
structural information. 

Because certain WSR methods can provide a means to capitalize on 
psychometric redundancy, and can be tied to the concept of sampling variables 
from content (sub)domains, the use of these methods may carry implications 
for the design of prediction batteries. The key design principle would seem to 
be: observe as many regressor variables as content considerations or prior 
knowledge suggests are necessary to cover the reliable criterion variance, and 
follow with structural models for estimation that are tailored to use of the 
information collected. 

The foregoing principle is clearly quite different from the standard 
operative principle in OLS regression applications: namely, use as few 
predictor variables as possible, attempting simultaneously to ensure that each 
will be individually valid for the criterion, as well as relatively uncorrelated 
with other predictors. OLS regression methods tend by their nature to 
discourage use of numerous predictors, except as summarized by a few 
preselected composites. 

Although we have used language that seems to require a strictly Bayesian 
approach to analysis, we note that de Finetti himself, perhaps the greatest of all 
twentieth century Bayesians, has argued that as techniques, Bayesian methods 
are no more trustworthy for applications than other statistical techniques since 
all techniques can easily be misused or abused (cf. de Finetti, 1974). Use of 
adaptive WSR procedures can be made to be generally consistent with the 
Bayesian outlook, a lade Finetti, even though the methods as such are founded 
on classical statistical arguments. Some may prefer to think of adaptive WSR 
methods as having an empirical Bayes form. In any event, the strong 
connections between the foregoing theory and the results of Chen (1979) 
suggests a strong bridge between the two classes of methods. 

Finally, it should be recognized that although MinRisk and some alternative 
WSR methods have been developed here using common factor models to 
convey apriori structures, a wide variety of structural models remain unexamined 
as a basis for estimators of the form of Equation 21. The use of common factor 
models seems generally consistent with exploratory applications where one's 
prior knowledge is diffuse or vague, a characterization that seems appropriate 
in exploratory contexts where multiple regression methods are so often 
employed. After all, if one hadfirm knowledge that a particular a priori model 
was appropriate for a certain predictorlcriterion system, that knowledge could 
be used to construct a composite predictor, and perhaps dispense with multiple 
regression completely. Nevertheless, we encourage studies of all structural 

MULTIVARIATE BEHAVIORAL RESEARCH 125 

D
ow

nl
oa

de
d 

by
 [

74
.7

0.
24

6.
63

] 
at

 1
0:

38
 3

0 
Ju

ne
 2

01
1 



R. Pruzek and G. Lepak 

forms that seem likely to support sound applications of prediction methodology, 
and recognize that the foregoing developments provide only an introduction to 
the possibilities. 
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Appendix A 

Proposition 

~ e f i n e t , '  = w$* + (1 - w,)G, where G is a fixed positive definite diagonal 
matrix. The difference between the risk for f ', with typical element b;, and 
the risk for i,' is given by 

(1) R@') - R@,') = {(1 - w,')/n){trZ*' + (trZ8)') - (1 - w,)?tr(X* - G)2. 

Proof 

Write 

which is a consequence of the fact that 

(cf. Dempster, 1969), which holds for any data distribution where all fourth 
order cumulants are zero (such as the multivariate normal distribution) (cf. 
Browne, 1982), and 

R@,*) = w , ~ ~ { t r & '  - C')') + (1 - ~ , , ) ~ t r ( X *  - G)'. 
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Proposition 1 follows easily using Equations 2 and 3, above. 

Proposition 2 

For a given Z', with typical element a. ', let thep x p  mat;ix Gn=goI, where 
15 

I .* is A the identity matrix and go (l/p)zq, . Define t:s-wn = Q{w& + (1 - w,) 
G}Q' (as in Equation 8) where G =&I, g, = XAJp. The difference between the 
risk for $:s-wn and the risk for i,* defined in Proposition 1 is 

Proof 

(6) R$* CS-Wo ) = E{tr@i - X*)2} +A(l - w0)'E{tr(~ - G)'} 
+ 2(1 - wo)E{tr (G - G)(ZG* - X')}, 

and since we can write 

(7) E { t r ( ~  - G)$: - X*)} = wo E{tr (G - G$*} 
= w" pvar ( i , )  
= w,E{tr (G - G)'}, 

we have the result. 

Proposition 3 

The difference between the risk for i* and the risk for l:s-w[, is given by 

Proof 

Write 

(9) Re*)  - ~ b : ~ . ~ )  = ~ 4 . )  - R$, - {R$:~.~J - Re; 1) 

and use Propositions 1 and 2. 
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Appendix B 

Population System - Gunst-Mason Data 
- 

Matrix of  Product-Moment Correlations 

Eigenvalues 

1 2 3 4 5 6 7 8 
- - - - - - - -  
4.366 1.409 313  .594 .326 ,299 .I25 .067 

Squared multiple correlations 
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