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Some New Regression Methods for Predictive and Construct Validation 
 
 Both predictive and construct validation are essential to instrument development in all social 
and behavioral sciences. Ideally, both types of validation entail theoretical as well as empirical 
studies; moreover, the term validation implies a process that takes place over time, often in a 
sequentially articulated fashion. The choice of methods and methodology for empirical data analyses 
is of course central to the viability of validation studies. 

In this article we shall describe and report on the empirical functionality of some modern 
methods for linear prediction, methods that appear to hold special promise for improving both the 
theoretical and empirical usefulness of validation studies in the social and behavioral sciences. 
Because ordinary least squares (OLS) methods are, far and away, the most popular forms of multiple 
regression, particular attention will be given to comparing the new methods with OLS regression.  

As suggested, validation is never complete. The process is generally ongoing and sequential. 
It follows that each individual validation study should yield results that can be linked to those that 
came before and to those that will follow. The methods on which we focus accommodate both of 
these needs better than do conventional regression methods that provide no mechanisms for 
incorporating prior information. It will be shown below that our methods – which are adaptive – also 
tend to yield more stable results in small sample situations with many variables, compared to their 
OLS counterparts. This, in turn, suggests greater efficiencies may be possible in using what are often 
limited resources for empirical studies than has come to be expected based on conventional methods.  

Cronbach and Messick (cf., Messick, 1989) distinguish between weak and strong construct 
validation. What mostly distinguishes these concepts is the degree to which the researcher can 
provide evidence of the form and type of expected interrelationships among variables defining the 
model in question. Although limited to linear systems, our methods help accommodate validation 
efforts across the weak-to-strong continuum. This is because the new methods can be used even if 
prior information is vague, as will often be the case at the early stages of research.   

Guion (1980) discusses potential threats to the generalizability of validation studies. Primary 
among these is quality of the design and analysis of studies used to provide evidence of validity. The 
methods to be described and studied in the following pages tend to encourage coherence among goals 
of the validation process, beginning with the design, on through to analysis of data, and planning of 
subsequent efforts. In this sense, the new methods have potential to increase the “dependability and 
extendibility of research inferences” (Messick, 1989, p. 57) by reducing threats that diminish chances 
of this occurring (i.e., sampling and measurement error). 

Finally, according to Messick (1989), validation should be viewed as a unitary process such 
that traditional content and criterion-related validity fall within the general construct validity 
umbrella. The logic of the newly developed methods in the context of design and analysis seems 
consistent with this view. We shall argue that results from studies that incorporate certain new 
methods can be expected to be interpretable in terms of the full range of relationships among the 
variables thought to operationalize the relevant constructs. 
 
Limitations of OLS Regression 

Numerous regression methods are of course available to researchers interested in studying 
relationships among several prospective predictors and one or more criterion variables (c.f. 
Darlington, 1990; Draper and Smith, 1981; and Rozeboom, 1966). Developed over many years, such 
methods can be used to answer questions concerning how to choose predictor variables that satisfy 
various standards of judgment. There have been a number of statistical and psychometric 
developments in recent years that bear on such questions. It follows that that researchers aiming to do 
validation studies must make a series of decisions, often among complicated alternatives, when 
selecting among available regression methods. It can be particularly difficult to do effective studies in 
typical social science situations where, there are – potentially – many variables, when their 
reliabilities are at least to some extent limited, and when sample sizes may be less than desired. 
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Although historically OLS regression methods have been commonly taught and continue to 
be heavily used, there are excellent reasons to be skeptical about these methods in validity studies. 
However, the problems brought about by the inadequacy of OLS methods have led many researchers 
to a variety of inadequate solutions. In a major paper that summarized many of the issues, Smith and 
Campbell (1980) – and their discussants – examined some of these attempts, which resulted in: 

• concluding that the problems cannot be overcome; develop and analyze only simple 
models; 

• ignoring the problems (either tacitly or explicitly) and crunch away at the data with such 
methods as stepwise regression that "disguise the imprecision of their estimates" (Smith 
and Campbell, 1980, p.75);  

• selecting only a small number of nearly orthogonal predictor variables; or 
• developing composite variables either through statistical approaches such as principal 

components analysis (Mosteller and Tukey, 1977) or more “logical” means such as 
combining test items into scales or total scores.  

The first two of these are fatalistic and forms of denial. Each of the two latter approaches also 
is problematic. Because there are numerous prospective predictors in typical social science prediction 
studies, it is particularly important that investigators have available methods that can accommodate 
many variables. Reducing the number of predictors through the use of composites is widely taught, 
and frequently recommended. However, this step is not necessarily either wise or helpful. Composites 
can lead to confounding of interpretations of derived regression weights. In particular, composites can 
result in masking of relationships between individual predictors and criterion variable(s), and can lead 
to reductions in the predictive value of the system of constituent variables, in relation to what may be 
possible with more comprehensive approaches to using predictive information.  

Another variation on OLS methodology features reducing the number of predictors by 
examining all subsets of predictors in relation to a criterion variable. But, while all subsets methods 
are generally acknowledged to constitute an improvement over hierarchical methods, to examine all 
subsets is so computationally intensive that the strategy is not feasible when there are very large 
numbers of predictors. Furthermore, all subsets methods generally make no allowances for 
measurement errors in predictor variables. Both predictors and criterion variables are nearly always 
non-ignorably fallible in social science applications. 

Alternative methods proposed to ameliorate problems associated with OLS methods include 
ridge regression (Hoerl and Kennard, 1970) and reduced rank regression (Lawley and Maxwell, 1973; 
Pruzek and Frederick, 1978). Campbell and Smith discuss problems associated with use of ridge 
regression. Although reduced rank (RR) procedures do accommodate these needs, such methods are 
strongly dependent on the ability of a particular common factor model to soundly represent the joint 
predictor/criterion covariance matrix. In contrast to RR methods, OLS regression makes no 
provisions for an analyst to incorporate prior beliefs about variable interrelationships into data 
analysis, nor do OLS methods take measurement errors into account.  

In the following section we briefly summarize WSR methods; next, we shall examine the 
applicability of these methods to validation processes, and go on to discuss the role of prior 
information in validation studies. Finally, we shall describe simulation studies that will help quantify 
the effects of using various WSR methods when they are applied to the same prediction problems. 

 
Weighted Structural Regression 

Recently, a new class of linear methods called Weighted Structural Regression (WSR) has 
been developed (Pruzek and Lepak (1992)) that subsumes OLS, ridge, and reduced rank regression, 
as well as many other cases, within its general framework. Most notably, certain forms of these new 
methods are adaptive, in that WSR methods allow one to incorporate prior information about variable 
interrelationships into analysis in a flexible fashion. When used in their adaptive forms WSR methods 
make it possible to capitalize on prior information (only) to the extent that it is supported by empirical 
data. When one’s data strongly support the prior model, derived WSR estimators may be (far) more 
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generalizable than their OLS counterparts. When the prior model is not supported at all, the fallback 
is to OLS regression. A particular attraction of WSR methods for validation studies is that structural 
models can be used that account for measurement errors, as well as prior beliefs about structures. 
Accordingly, WSR methods may be expected to lead to enhanced interpretations of results. 

Although WSR procedures can in principle accommodate a wide range of population 
covariance structures, the discussion here will be limited to the use of prior models of common factor 
form. WSR based on such models are both conceptually and computationally simple to implement, 
and may not be particularly limiting in the context of instrument validation. Other linear models that 
fall within the WSR framework include multiple dependent variables models, or those that specify 
relationships among error terms, as often used in structural equation modeling studies. Our discussion 
here is consistent with, but much more abbreviated than that of Pruzek and Lepak (1992). 

For any set of k predictor variables and a criterion OLS regression equations can be simply 
derived from the joint covariance matrix of all observed variables. In particular, if y   
designates the criterion variable and x the set of k predictors, then the (1 | k) symmetrically partitioned 
covariance matrix   
                             cyy   Cyx   

(1)  C  =                   
                             Cxy  Cxx   
can provide the basis for generating βy.x, the k x 1 vector of ordinary least squares regression 
coefficients. Specifically,  
        (2)  βy.x  =  Cxx

-1 Cxy 
where Cxx represents the k x k covariance matrix for the independent variables, Cxy  is the vector of k 
predictor-criterion covariances (cyy represents the variance of the dependent or criterion variable). 
 Given the same joint predictor-criterion covariance matrix C, suppose a common factor 
analysis is completed. Now, let Am denote the matrix of common factor coefficients, and U2 depicts 
the corresponding diagonal matrix of uniqueness variances (cf. Lawley and Maxwell, 1971). Then the 
m-factor approximation to the covariance matrix C can be written as   
      (3)  Cm  =  Am Am'  +  U2 .  
 WSR entails “combining” the observed (sample) matrix C with its counterpart Cm. That is, 
WSR procedures define a particular convex sum of the model free estimator of the joint predictor-
criterion covariance matrix and a common factor estimate associated with this same covariance 
matrix, written as    
         (4)  Cmw* =  w C  + (1-w) Cm , 
where C is the conventional (maximum likelihood [model-free]) estimator of the joint predictor-
criterion population covariance matrix; Cm, defined in Expression (3), is the m-factor common-factor 
approximation for the same population covariance matrix; and w is a scalar in the interval (0,1), 
usually defined in terms of n and another scalar, γm; viz., w = n/(n+γm). Pruzek and Lepak (1992) 
discuss the rationale for defining γm = (p(1+ rm )-2)/(p - rm ), where p is the number of variables and 
rm is a function of the p – m smallest (“rejected”) eigenvalues for the m-factor model. The function rm  
is defined as follows: let am = Σej for j=m+1 to p; and bm = Σej

2, also for j=m+1 to p. Define rm =  
am

2/bm. [see footnote * below]   
Thus, WSR regression weights can be written simply as the vector  

        (5)  βy.x(m,w)
* 

   =  Cxx
*-1 Cxy

*,  
where each term has the same form as Expression (2), except now the asterisks mean that the  
 
------------------------------------------------------------------------------- 
* RP notes that William W. Rozeboom (Professor Emeritis, University of Alberta) wrote a substantial paper 
(unpublished) concerning properties of rm. He found this function to be most interesting. His work makes it 
obvious that it is rm, not γm, that does the work in WSR; we would like to reopen studies to extend his work in 
the WSR context. A copy of WWR’s paper available from RMP on request.    
 

 
ê ê 
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constituent elements of Expression (5) derive from the partitioned form of the matrix in (4). WSR 
weights are explicitly dependent on the choice of m, the number of common factors; w, in turn, 
depends on the scalar γm, which further depends on rm.  

If the scalar w is defined a priori (as unity for OLS regression, as zero for RR regression) then 
the WSR method is said to be non-adaptive. When w is derived adaptively, as in w = n/(n+γm), where 
γm is estimated (in what follows, non-iteratively), then WSR weights in (5) reflect how well the m-
factor model fits extant data.  

It should also be noted that if the number of common factors is set at zero, a priori, then the 
general from of Cm in Expression (3) is that of a diagonal matrix; this case corresponds to ridge 
regression. Of course several methods of common factor analysis could be used to form the m-factor 
approximation Cm, and recent work has been particularly instructive about what seem to be effective 
prospects for these in different applications. Three alternative ways of generating w adaptively are 
noted later, in the context of simulation studies. Pruzek and Lepak (1992) provide relevant technical 
details. Moreover, software to implement such methods is also available from one of us (RP). 

Some further technical information may help explain the underlying logic of the adaptive 
system. When a common factor model is used to generate the model-based estimate in Expression (3), 
then the computation of γm, and hence w, is based on the set of p - m rejected eigenvalues of the 
(scaled) joint predictor/criterion covariance matrix. To the extent that these smallest eigenvalues are 
relatively homogeneous, the structural model is supported; this is because variance in these smallest 
eigenvalues, which is summarized by rm, simply reflects lack of fit of the off-diagonals of Cm to the 
matrix C. When an m-factor model fits well, w becomes small, so that WSR weights derive mostly 
from parameter estimates associated with the matrix Am. Particularly when m is relatively small, 
WSR weights will tend to be interpretable in terms of common factors; furthermore, the stability of 
WSR predictor weights will then tend to exceed that of their OLS counterparts. 

 
Applicability of WSR Methods to Validation Processes 

The use of adaptive WSR methods for validation studies, paired with an effective approach to 
planning and design of prediction batteries, seems to offer special potential for enhancing both 
interpretability and generalizability of derived results. As Messick (1989) notes, the validation 
process involves testing of a theoretical rationale with evidence obtained from applications of the 
measure(s) of interest. At any point in the validation process adaptive WSR methodology facilitates 
making connections between past theorizing and results of current empirical studies. Indeed, standard 
WSR methods generally require an investigator to articulate his or her theoretical expectations in the 
form of a prior structural model. It follows that WSR methods should help encourage investigators to 
inform themselves comprehensively about characteristics of their measures, as well as the 
respondents to whom they are to be administered.  

Nevertheless, these particular structural regression methods enable the investigator to 
incorporate vague prior structural models, ones that can perhaps usually be justified in situations 
typical of those in which OLS regression is most commonly used. It is in just such situations that  
exploratory common methods seem most appropriate. (At relatively more mature stages of a 
validation process, more confirmatory structural models may be warranted; WSR methods can in 
principle be seen as relevant in such situations, but possibly with confirmatory models replacing 
exploratory common factor models.) 

WSR methods can be described with reference to a general Bayesian perspective within 
which prior beliefs are incorporated in a straightforward way in most applications. Because adaptive 
WSR methods treat predictors as random variables, these methods seem especially appropriate in 
validation studies that seem amenable to use of multiple linear regression. In relation to conventional 
regression methods, WSR also makes more realistic assumptions in the way that they accommodate 
prior information, as well as variable unreliabilities. As noted above, adaptive WSR methods use 
prior information in such a way that the prior model is weighted according to how much support it 
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has from extant data. 
Many decisions must be made in selecting predictor variables in a particular validation study. 

It is becoming increasingly clear, however, that one’s prior beliefs play an especially important role in 
determining if a study is to be relatively successful. WSR methods draw attention to beliefs a 
researcher holds about various variable interrelationships, and how this information can be used to 
enhance usefulness of empirical data through comprehensive analysis. The key point, again, is that 
one must have available methods of analysis that can incorporate this information, even when it may 
be somewhat vague or diffuse.  

Successful prediction studies combine the reliable information contained in the predictor set 
with a method of analysis capable of using this information. In many, perhaps most, behavioral 
applications, numerous predictors are either available or could, with some effort, be made available. 
WSR methods tend to encourage use of as many predictors as may be needed to “cover” the reliable 
criterion variance. Unlike conventional regression methods, those based on adaptive WSR algorithms 
tend not to break down as the number of predictors is increased, even if the predictors are mutually 
intercorrelated. For this reason, use of WSR methods tends to ameliorate the multicollinearity 
problem. 

In our applications it has been interesting to learn that model-derived weights, that may often 
“look” quite different that OLS weights, often “work” nearly as well as “optimal” OLS weights, and 
are quite interpretable. The latter weights necessarily achieve the maximum possible multiple R2 
between the set of predictors and the criterion variable. But OLS weights routinely have poor 
generalizability properties, compared to weights derived by methods that incorporate prior 
information in analysis. In particular, WSR weights tend to generalize better to successive samples, 
meaning that they tend to exhibit less sampling variability than do their OLS counterparts. 

In general, the suitability of a method of analysis depends on the match between the 
researcher's prior assumptions and the actual conditions represented by the obtained data (Laughlin, 
1986). Also relevant is just how suitability is assessed. In regression studies, the focus of interest may 
be on a theoretical interpretation of the various weights assigned to a set of predictors relative to one 
or more criteria; or more practically, on the ability of the set of regressors to predict criterion scores 
accurately in some future application. We shall attend to both such issues in the simulations below. 

 
Role of WSR in the Validation Process 

Although most investigators appear to have been taught that factor analytic methods and 
regression methods are distinct and independent from one another, the introduction of WSR 
methodology suggests that these two methods are two sides of the same methodological coin. When 
using WSR methods for validation, it is feasible to treat the problem of choosing or selecting effective 
measures of constructs at the same time as such constructs are examined in relation to the criterion 
variable(s). In large, comprehensive, batteries communality estimates for individual predictor 
variables may be treated as reliability measures. Explicitly, derived factor coefficients for the joint 
predictor-criterion battery, typically following some form of transformation, can serve to facilitate 
naming of measures based on empirical relationships among all variables. Consequently, such factor 
coefficients can facilitate development of a theoretical network that is consistent with data in the 
context of construct validation. 

On the other hand, criterion-related validity is generally viewed as falling within a regression 
framework. Researchers frequently appear uninterested in examining relationships among variables 
relative to the obtained regression weights, and thus ignore the question of why one predictor may 
receive a large (small) weight compared to another theoretically similar predictor. By their nature, 
OLS methods tend to focus on the magnitude of the squared multiple correlation between predictor 
sets and criteria, and examination of which variables contribute “significantly” to the criterion. But to 
focus narrowly only on such questions is to ignore the larger question of what variables to commence 
with in a given regression study, including individual test items, subtests or composites, or other 
(linear) combinations. 
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It seems important to consider the underlying structure of the most basic predictor variables 
available, and when possible, also to examine criterion validities in relation to these variables. In 
validation studies it is most helpful to think in terms of the prediction with reference to constructs 
associated with the domain of variables under study. What the conventional perspective often ignores 
is the notion that both the specific predictors and criterion variable employed represent just a sample 
of many possible measures that might have been used to represent the underlying construct(s) the 
researcher is attempting to use in prediction, or to explain. Use of WSR methods reinforces 
consideration of constructs in general prediction situations. In addition, WSR methods can help by 
facilitating thinking about latent (underlying) relationships, as well as reliabilities of predictor 
variables, in the context of one or more criterion variable.  

Factor-based models tend to impose only loose or exploratory models about structural 
relationships among variables or constructs they may represent. But the adaptive feature of WSR 
methods, based on the concept of diffuse prior information, can reduce the importance of the specific 
models chosen, which should be especially beneficial in the common validation situation where prior 
information tends to be vague. It is anticipated that WSR methods may be quite useful even at the 
earliest stages of a series of validation studies. However, we do not argue that common factor 
methods cover all potential needs in the context of providing prior structural information or 
knowledge. Rather, we suggest that use of adaptive WSR forms, perhaps based on common factor 
starting points, can improve on work-a-day practice in the context of validation studies for the reasons 
that have been given. Such methods are regarded as a prospective beginning, not an end of 
methodological improvements in the context of validation studies. 

Of special relevance to those using WSR in validation studies is that a particular advantage 
accrues to the theorist whose prior or advance knowledge is greatest at the time of composing the 
prediction/criterion battery. Such an individual entertains a good chance of being able to compose this 
battery so that relatively few factors, m, will be sufficient to explain or account for all off-diagonal 
elements of the joint covariance matrix. This, in turn, will help make the scalar γm relatively large, so 
that w will be relatively small. It is just this prospect, that of making the vector of WSR weights for 
the predictors derive mostly from the common factor coefficients in Am, that offers greatest hope for 
major improvements in interpretability and generalizability in contexts of empirical validation.  

 
Simulation Methods 

Two population systems are studied here; each was derived from real data. Although 
simulated data are used exclusively in the studies reported below, certain procedures were followed to 
help ensure realism, and to provide a distinctive challenge in the context of comparing the various 
regression methods. These steps included using real data sets of varying complexity as the basis for 
the simulation, as well as testing methods across a range of sample sizes. After the initial simulation 
results are presented, a further side study is reported to examine the robustness of these methods to a 
realistic level of outlier contamination. Methods for the outlier study will be described briefly after 
the first part of the simulation study has been presented. 
 
Population Data Sets: The correlation matrices used to simulate data in this study were chosen to 
vary in the complexity of relationships among predictors. A second facet, sample size, was included 
to test its possible interaction with the other characteristic with respect to one or more of the 
evaluative criteria. 

Two population data sets were selected: 1. Multi-trait-Multimethod Matrix (MTMM) 
(Campbell and Fiske, 1959) and, 2. Hauser’s data (Hauser, 1966). These populations consist of ten, 
and 12 variables, respectively. They differ in their relative conformity to the common factor model, 
and in the relative predictability of the variables among themselves. 

As noted above, all variables are assumed to be random, befitting the typical condition for 
observational research in the behavioral sciences. By considering all variables to be random, the 
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predictability of the overall system for each data set can be examined as a whole, in addition to the 
specific individual criterion variables selected for each data set.  
Given each population, 100 samples of size n = 35, 70, and 140 were simulated using normal 
bootstrapping procedures (Efron and Tibshirani, 1986). This method entails generation of one 
hundred multivariate normal samples of size n, for each population; each sample is derived to be 
stochastically consistent with the respective population (correlation) matrix. However, for each 
sample, the regression analyses were begun from a sample variance-covariance matrix. 

In more detail, the population sets used as the basis for simulation were: 
Multitrait-Multimethod (MTMM): Campbell and Fiske (1959) discuss a 15 variable data set of 
MTMM form consisting of five trait and three method factors. As Campbell and Fiske indicate, the 
data fit the MTMM model loosely, particularly for the third set of method variables (peer ratings) for 
which correlations were relatively low. To make the problem more manageable for this work, without 
sacrifice, the latter five peer rating variables were dropped. As may be apparent from examination of 
Table 1a, this ten variable set creates a reasonable test for the factor based methods, particularly for 
low values of m.  
Hauser: The Hauser population derives from relationships among twelve sociological variables and a 
sample size of 3427. The criterion variable for this system was chosen by the author (Hauser, 1966) 
and that is used here as well. The original predictor data was gathered in 1957 and consists of four 
measures of socioeconomic status, two measures of academic ability, three measures of student's 
perceptions, and two measures that addressed student's plans following high school. Criterion variable 
data (level of educational attainment) was collected in 1964. The Hauser population correlation 
matrix, SMCs, and eigenvalues are presented in Table 1b. These variables appear to constitute a fairly 
well defined two-factor system with only moderately high SMCs (and communalities).  
 
Methods of Analysis 

For each combination of data set, and sample size, the following regression methods were 
used to compute regression weights. In each case where a common factor method was used in these 
simulations, a variant of Joreskog’s (1969) image factor analysis was employed. 
(See Pruzek and Lepak (1992) for more details about these methods.): 
1. Ordinary Least Squares (OLS): OLS is equivalent to a MR solution (see below) with w = 1. 
2. MinRisk Ridge (Ridge), m = 0: the model-based information becomes diagonal in form, 
representing the ridge (biasing) diagonal. 
3. MinRisk (MR), m = 1,2,3: Here models of common factor form were first used to obtain the so-
called model-based estimator of the covariance matrix; see Expression (4) above. For MR, wm = 

n n
m

/ ( )+
!

" ; γm reflects how well the common factor structure fits extant data.  
4. MinRisk*2 (MR2), m=1,2,3: This is a modified form of MR where w = n / (n + 2γm), so that more 
weight is given to the common factor model in the convex sum, with respect to (3); 
5. GFI:  This method uses matrix traces, where w = (d1 / d2)(tr(Cm*-1C – I)2 /tr(Cm*-1C)2); 
( / )d d1 2 , based on degrees of freedom, equals p p p m p m( ) / (( ) )+ ! + ! +1 22  (cf. Jöreskog & 
Sörbom, 1986). GFI usually results in greater weight to the prior structural model than either MR or 
MR2; 
6. Reduced Rank (RR): This method sets w = 0, a priori, in Expression (4). In this case RR regression 
entails use of a small sample version of image factor analysis suggested by Pruzek and Lepak (1992). 
The same common factor method was used for methods MR and MR2. 
 
Criteria for Comparison of Methods: 
This study examined both the reproducibility of regression weights and cross validation squared 
errors of prediction. Specifically, the methods were compared with the following evaluation criteria. 
(See the Pruzek and Lepak reference for more detailed descriptions.) 
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1. Mean Squared Errors (MSEs): these are the average squared differences between sample 
regression weights from the 100 normal bootstraps and population OLS counterparts; 
2. Predictive Mean Squared Errors (PMSEs): PMSEs, or more accurately, the estimable parts of the 
predicted mean squared errors, are analogs of the MSEs, except PMSEs entail use of a weight matrix 
in computation. PMSEs are useful in that they indicate how well (actually, poorly) estimated sample-
based regression estimates of the criterion variable (y-hats) should work when they are substituted for 
their population counterparts; 
3. Cross Validation Average Squared Errors (Cross Valid): These indices describe how much error is 
associated with use regression weights from each normal bootstrap sample, applied to a second 
(independent) normal bootstrap sample. Cross Validation Avgerage Squared Errors summarize how 
(poorly) weights holds up in an arbitrary random sample of the same size drawn from the same 
population. 
 
Results  

Simulation results for both population systems are presented. For each system, summaries are 
provided for the specific designated criterion variable, as well as the overall system (each variable 
predicted from p - 1 others). Simulation results are presented for n = 35, 70, and 140, and for values 
of m = l, 2, and 3. Use of all three values of m helps show how model-based methods work across a 
range of ms, to facilitate generalizations to other real data problems. No subject-specific 
interpretations are discussed for the data sets since the focus is on the fit of the different common 
factor models to the data under varying conditions of interest (sample size x population complexity). 
Multitrait-Multimethod (MTMM): Table 2a summarizes MSEs, PMSEs, Cross Validation Average 
Squared Errors and GOF indices (1 - w) for the designated criterion variable for the MTMM data set. 
Table 2b presents this same information for the “overall” system. A few further comments will be 
made about the simulation results, beyond those that can be discerned from these tables, as seems 
needed for a comprehensive assessment of results. 
MSEs: For this population, with n = 35, MR2 and GFI solutions perform the best, particularly for m = 
2 with MSE values approximately one-third as large as those obtained from OLS. For the smallest 
values of n in particular, the improvements over OLS are dramatic!  Ridge regression weights were 
nearly as poor as those from OLS, although the standard deviation of their obtained MSE values (not 
presented here) were substantially lower. RR MSEs improved greatly as m increased from one to 
three for all sample sizes, but only begin to be reasonably small for m = 3. 

For n  = 70, the MR and MR2 methods again outperformed OLS. GFI weights did less well 
with this larger data set. MR2 gave the best solution with MSEs roughly one-half as large as their 
OLS counterparts. Ridge weights worsened relative to all the other methods, with MSE values 40 
percent larger than those for OLS. RR once again improved as m was raised from 1 to 3.  

With n = 140, MR2 MSEs remained the best, approximately 50 percent better than those from 
OLS and 100 percent better than ridge values. The standard deviations of the MR2 MSEs remained 
less than 60 percent as large as those for OLS.  Little difference was found across values of m from 1 
to 3. GFI MSEs varied significantly across the values of m, as did those for RR; the MR and MR2 
results did not change greatly over the three values of n. The relatively high MSEs for this specified 
criterion variable reflect the relative lack of fit of any low rank common factor model to this data set. 

For the overall system, referring to Table 2b, MSEs remained high for this data set compared 
to both the circumplex and Hauser data. OLS weights were more than three times as large as those 
from MR2 and GFI (with standard deviations five times as large), with n = 35. MR2 was clearly the 
best method for both n  = 70 and 140. GFI did less well at these larger sample sizes. RR remained 
mostly unaffected by increases in the sample size though raising m from 1 to 3 did improve RR 
significantly. OLS MSE standard deviations remained high relative to the other methods. 
PMSEs: For n = 35, for the specified dependent variable, OLS PMSEs were nearly double those from 
MR and MR2, with standard deviations (not presented) 50 percent larger. For n = 70, OLS PMSEs 
remained larger by about 25 percent compared to both MinRisk methods. Even at n = 140, OLS 
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values were still 20 percent larger than their adaptive MR counterparts. Neither ridge nor GFI did as 
well as either MinRisk method, though both out-performed OLS. The PMSEs for RR were notably 
higher than for the other methods, especially for smaller value of m. 

As seen from Table 2b, GFI did as well as MR and MR2 for n =35, for the overall system. 
Otherwise, a similar pattern was found (for n = 70 and 140) as described for the designated criterion 
variable. 
Cross Valid: For this index, for both the specified dependent variable and the overall system, rather 
minor differences were found among methods. However, results again favored MR, MR2, and GFI 
for n = 35 compared to OLS (by roughly 10 percent for the average values, 20 percent for the 
associated standard deviations). For this criterion, and this population, most differences among 
methods were no longer discernable for n = 70 and 140. RR solutions were the worst for this 
criterion, particularly for smaller values of m. For n = 70 and 140, changes in m had little effect on the 
convex sum methods. 
Goodness of Fit (1-w): Goodness of fit values, which merely reflect how much weight was given to 
the m-factor model in each adaptive WSR application, were relatively low for this population. For n = 
140, the model was weighted from five to just below 20 percent for m = 3. Even for n = 35, the 
highest weighting (for m = 3) was only .385. 
 
Hauser:  Tables 3a provide MSEs, PMSEs, Cross Validity Error indices and GOF indices  
(1 - w) for the designated criterion variable for the Hauser data. Table 3b provides this same 
information for the overall system (excluding the goodness of fit index which is only relevant for a 
specific criterion variable).  
MSEs: The pattern described above for the circumplex data set continues for the Hauser set, though 
with more dramatic differences between the conventional OLS methods and their adaptive WSR 
counterparts. For the specified criterion variable, with m = 2 (the best solution across sample sizes), 
MR2 and GFI methods, for n = 35, perform as well as OLS for n = 140!  For n = 35, OLS MSE 
standard deviations are seven times as large as the MR and GFI counterparts. Even for n = 140, the 
OLS MSEs are twice as large as those obtained from MR an MR2 and the OLS standard deviations 
remain two to three times as large as the convex sum analogs. 

Ridge regression outperformed OLS at all sample sizes for the Hauser system, but Ridge 
produced MSEs 36 percent larger than those from MR2 with n = 35, and 67 percent larger when n = 
140. Reduced rank did particularly well for n = 35; however, with the extra data available at n = 140, 
RR no longer outperformed the convex sum methods, particularly MR2. GFI also slipped behind both 
MR and MR2 for n = 140, although, as expected, it outperformed RR for the Hauser system. 

For the overall system, the same general pattern was found. GFI performed best with n  = 35; 
MR2 passed GFI for n = 70 and outperforms it by nearly 50 percent for n = 140. The ratio of OLS 
MSE standard deviations to those from the convex sum methods varies from about 2.2 for n = 140, up 
through 6.3 with n = 35. 
PMSEs: For the Hauser problem, with n = 35, OLS PMSEs are approximately four times as large as 
those from MR2 and GFI with a standard deviation also four times the size as their convex sum 
counterparts, for the specific criterion variable. With n = 70, the ratio drops to 3:1 with standard 
deviations more than twice as large. OLS PMSEs for n = 140 are still 20 percent larger than those 
from MR with a standard deviation also 20 percent larger. 

As with MSEs, GFI and MR2 PMSEs are comparable for n = 35. Increasing the sample size 
to 140 decreased the overall value of the PMSEs for all the methods. For the overall system, MR2 and 
GFI PMSEs were similar for n = 35. Compared to PMSEs from OLS solutions, MR and MR2 values 
averaged less than one-third as large. With n = 140, MR and MR2 continue to notably outperform all 
other methods, including GFI. 
Cross Valid: For the specific criterion variable, all non-OLS methods outperformed OLS for n = 35 
by approximately 30 percent using this standard of comparison. With n = 70, the improvement 
dropped to ten percent for MR, MR2, GFI, and RR. For n = 140, average cross validation errors were 
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quite similar across all methods. A similar pattern was found for the overall system. It is notable that 
RR, which was found to reproduce population weights especially poorly, especially for m = 1, did 
better than OLS for the smallest n, even for m = 1 when n = 35. In general, it appears that Cross 
Validation Error does not provide a sensitive criterion for comparing regression methods. 
Goodness of Fit (1-w): Hauser goodness of fit values were relatively high, ranging up to .452 for n = 
35. This should not be surprising since the Hauser structure is fit relatively well by a low-rank 
common factor model. It is worth noting that the “best” adaptive methods, MR2 in particular, never 
yielded GOFs that even began to approach unity, the value that would be expected if the common 
factor model really was “completely satisfactory.”   

A final summary of all results is reported below, after the next study has been reported.  
 

A Modest Simulation Study to Examine Outlier Robustness 
            This part of our study entailed similar methods to those used for the preceding simulations, 
except that the initial multivariate normal data matrix was deliberately contaminated by adding a 
small percentage of  “outlier” values in order to compare the same methods with OLS in the presence 
of non-normal data. The particular methods for data contamination are briefly described below; the 
goal was to produce data that would simulate outlier systems of the kind that might commonly be 
encountered in work-a-day practice in validation studies. The particular reason for this extension to 
the preceding work is that some reviewers have questioned whether the advantages of WSR methods 
depend strongly on the use of multivariate normal sampling. The ensuing results speak to this 
question, if only in a limited way. 

Following the construction of the initial simulation data matrix (Xsim), using multivariate 
normal sampling, a second compatible matrix was constructed, Xcont; this was done for each sample, 
for each value of n. Thus, each sample Xcont had n rows and p columns, but only k percent of those 
rows were non-null. The percentage of non-null rows was specified to be either two percent or five 
percent for each combination of population, common factor structure, and sample size. The non-null 
rows had exactly the same form as Xsim ; however it's columns were mutually independent. The 
matrix of these non-null rows was multiplied by the constant three so as to exaggerate the effect of 
these contaminates as outliers; this had the effect of producing outliers that were based on a 
simulation population a variance nine times larger than that of the original population.  

Further, rows of the contamination matrix Xcont were bootstrapped so as to provide different 
numbers of contaminated rows in different samples, averaging k percent in number. This bootstrapped 
version of Xcont matrix was then added to the initial Xsim to produce the matrix Xsimcon. All data 
matrices employed in this simulation had this form. This data generation procedure (i.e., with k = 2% 
or 5%) generally resulted in kurtosis statistics that were consistently larger than those of a normal 
distribution. 

Because of the relatively more detailed results that this methodology involved, only two 
sample sizes were used here: n = 60 and n = 120. Three values were specified for m: m = 2,3 and 4. 
Again, one hundred bootstrap samples were used for each experimental combination in the simulation 
study. Cross validation errors are not provided in this phase of the simulation work. 

Table 4 summarizes MSE and PMSE results for the Hauser data in a fashion that differs from 
the preceding Tables. In particular, to simplify how efficiencies of non-OLS methods compared with 
those for OLS, efficiency ratios were computed for each combination of method, sample size and 
value of m. Consequently, once the overall MSE and PMSE results are given (in the first row) for 
OLS, subsequent row numbers exceeding unity reflect an MSE or PMSE smaller, and efficiency that 
is greater (i.e. better), than that of OLS.  Efficiencies less than unity reflect systematically worse 
performance, relative to OLS. 

In nearly all cases, 116 of 120 (i.e., 60 for MSE & 60 for PMSE) results for the non-OLS 
regression methods showed greater efficiencies than OLS for both MSEs and PMSEs. In all instances 
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the non-OLS regression methods that used an adaptive weighting scheme yielded greater regression 
stability than least squares regression for both MSE and PMSE efficiencies. The only non-OLS 
method that did not consistently out-perform least squares regression was, the non-adaptive method 
Reduced Rank, which performed less well than least squares three times for the PMSE statistics at m 
= 2 and once at m = 3. 

Examination of the MSEs and PMSEs for the specific method(s) that performed best (bold 
faced results in Table 4) shows that the GFI and MR2 methods were generally best: GFI performed 
best fourteen times, and MR2 performed best nine times. Interestingly, a pattern between GFI and 
MR2 appears to be delineated by the two efficiency statistics. With respect to the MSEs, the GFI 
method performed best with MR2 the next best eight times; the remaining four next best results are 
for Reduced Rank (including ties). In contrast, focusing on the PMSEs the MR2 performed best nine 
times of the possible 12, while GFI performed best three times, and Minimum Risk Ridge performed 
best once (including ties). PMSE results divided the next best performances among MR (six times), 
MR Ridge (three times), and GFI (one time).  

The pattern of the GFI method performing best with respect to MSE criteria and the MR2 
method performing best with PMSE criteria was also seen in the single overall best performance 
advantage over OLS for each statistic. Both instances occurred for  m = 2, k = 2%, and n = 60 with an 
MSE ratio of 2.51 for GFI and an PMSE ratio of 1.82 for MR2.  
In general, the advantages of the adaptive WSR methods over OLS were greater for smaller sample 
sizes, and for the smaller level of contamination. But with m set at a reasonable value of two for the 
common factor model, the MR2 and GFI methods typically showed very substantial advantages over 
OLS, particularly with respect to the MSE criterion. 
 
Conclusions 

The viability of adaptive WSR methods for the analysis of data for a range of prediction 
problems, as developed by Pruzek and Lepak (1992), has been supported and extended by this study. 
Taken across all simulations, with two populations, varying sample sizes, and both normal and non-
normal sampling processes, several results seem clear.  

The MR2 method appeared to be the best method overall, even though MR and GFI showed 
the potential to improve on MR2 with respect to some criteria. Taken across both population systems, 
and all evaluative criteria, foregoing results suggest that for any given sample size – in the range of 
those examined – use of the best WSR method can yield substantial dividends. Specifically, the MR2 
method for a given sample size n (and appropriate m) worked systematically at least as well as OLS 
for a doubled sample size, and sometimes as well as OLS for 4n!  Examination of Tables 2a and 2b, 
as well as Tables 3a and 3b, show consistently for most evaluative criteria that OLS methods were 
distinctly inferior to the best WSR counterparts. 

The simulation study that examined effects of outliers further suggested that the special 
advantages of WSR methods are not confined to situations where multivariate normal sampling is 
used. The same WSR methods, especially MR2, showed themselves to be systematically better across 
both sample sizes and both levels of contamination than OLS methods. However, the WSR method 
closest to OLS, viz. MR, was not as effective as were MR2 and GFI in the presence of outliers. Also, 
for the larger n, the RR method did not perform well with respect to the PMSE criterion, especially at 
the higher level of contamination. These same findings were substantiated in the more comprehensive 
outlier simulation studies that were completed, but for reasons of space could not be included here.  

The GFI method showed less robustness to variations in m than did MR2. Although methods 
such as the so-called Scree criterion seem often to work satisfactorily in selecting m for real data 
factor analyses, there is often some ambiguity associated with this choice. It is therefore pleasant to 
have seen that results from MR2 (especially) appear largely invariant to the choice of m, at least if 
one’s choice for this scalar is in the “right ballpark.”   

That the better adaptive WSR methods often worked so much better than conventional OLS 
regression seems especially striking. Although some non-adaptive regression methods may have 
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certain features described below, adaptive WSR procedures are notable because they: 
• make provision for incorporation of prior (possibly vague) structural models into analyses; 
• weight the prior model adaptively, to the extent supported by observed data; 
• can distinguish in principle between observed data and underlying latent traits; 
• are invariant to shape preserving linear transformations of the data;  
• are relatively robust to changes in the specification of m for the common factor model; 
• can help enhance interpretability and generalizability of regression results even when the number 

of predictors approaches sample size;   
• encourage the selection of predictors on the basis of theoretical considerations; and 
• do not break down as the number of manifest variables is increased, provided that an appropriate 

method for common factor analysis is used. 
In addition, it should be clear that adaptive WSR methods are both relatively easy to teach, 

and to program. Furthermore, these particular WSR methods are computationally highly efficient. 
They entail only about twice as much computation as a single OLS regression, and are far less 
computationally intensive than typical hierarchical or all-subsets methods. 

By their nature, the adaptive WSR methods provide a coherent means of combining design 
considerations with analyses, in the context of what may be planned, sequential approaches to 
instrument validation. As many readers will know, results based on OLS methods tend to deteriorate 
rapidly as the number of correlated predictors grows, especially for anything but huge samples. 
However, as shown in preceding simulations, adaptive WSR methods may dramatically outperform 
OLS, the standard method for multiple regression, whether samples are multinormal, or 
contaminated. What could not be demonstrated in simulations, but what has become clear to the 
authors in many circumstances, is that the relative advantages of WSR methods over OLS methods 
can be far greater when there are many more variables than were included in the MTMM and Hauser 
populations.  

That the new WSR methods can work so very much better than OLS methods may lead to 
different strategies for validation studies, compared to what has been most common in the past. In 
particular, small sample studies might be sequentially articulated to investigate particular construct 
domains, such that both structure and predictability of predictor-criterion systems become the focus 
of study. Based on newly available methods, one may expect to learn more, about more variables, 
than would have been possible had conventional validation strategies are followed. 

Given sufficiently large sample sizes, results from adaptive WSR and OLS can be expected to 
converge (cf. Pruzek and Lepak, 1992). However, for smaller sample sizes such as those used in our 
simulations, OLS never performed as well as the best convex sum WSR alternative with respect to 
any of the evaluative criteria. Moreover, as the MTMM results suggest, even relatively conservative 
goodness of fit values can still bring about increased generalizability of regression results. 
 Particularly in cases where battery design has been such as to enhance the likelihood of a 
low-rank common factor model being supported by data, advantages deriving from application of 
WSR methods may be expected to be substantial. 

Further research to develop effective structural models and to assess methods that 
accommodate multiple criterion variables, as well as multiple predictors, has been progressing well, 
increasing the promise of these methods. Extending WSR methods to structural models beyond those 
of factor analytic form is desirable but little work of this kind has been done. 
 
Software Availability 
 Readers who wish to acquire (R) functions that can be used to perform WSR analyses are 
welcome to contact R. Pruzek at  rpruzek@uamail.albany.edu   .  
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Table 1a 
Correlations, Squared Multiple Correlations and Eigenvalues for Multitrait-Multimethod 
Population System (Source:  Campbell and Fiske, 1959)                                                                                                            
_________________________________________________________________________ 
CORRELATION MATRIX 
1         1.00 
2           .27      1.00   
3           .62       .57    1.00    
4           .36       .47      .90      1.00    
5           .69       .32      .28      -.06      1.00    
6           .57       .11      .19      -.01       .53     1.00 
7           .28       .65      .42       .26       .37       .26      1.00 
8           .44       .25      .53       .45       .29       .31        .32     1.00 
9           .31       .20      .54       .52       .13       .11        .21       .47    1.00 
10         .15       .30      .12       .04       .34       .10        .12       .04      .06   1.00 
SMCs  
              1         2          3         4          5          6           7          8         9        10 
             .77      .62      .94       .92       .75        .42        .52       .40      .37      .21 
EIGENVALUES 
              1        2          3         4          5           6           7           8         9       10 
          4.067   1.772  1.247    .893     .662      .489       .445     .258     .134    .034 
 
Table 1b 
Correlations, Squared Multiple Correlations and Eigenvalues for Hauser Population System 
(Source:  Hauser, 1963) 
_________________________________________________________________________ 
CORRELATION MATRIX 
1      1.000        
2        .500 1.000 
3        .494   .318  1.000 
4        .389   .291   .523  1.000  
5        .244   .230   .212   .203  1.000  
6        .151   .149   .127   .116   .586   1.00  
7        .159   .141   .144   .146   .352   .439   1.00  
8        .299   .269   .290   .288   .369   .335   .424   1.00  
9        .278   .256   .284   .288   .318   .321   .327   .418   1.00    
10      .306   .269   .299   .304   .435   .469   .438   .542   .496  1.000   
11      .287   .246   .301   .288   .455   .466   .413   .507   .474   .766  1.000 
12      .344   .292   .325   .319   .481   .545   .489   .491   .659   .659   .594 1.00 
SMCs   
             1       2        3       4       5       6        7        8        9       10      11      12     
          .403  .287   .389   .329   .414   .480   .307   .396   .337   .672   .626   .565 
EIGENVALUES   
            1       2        3       4       5       6        7        8        9       10      11      12  
        5.016 1.633  .864  .767   .683   .590   .530   .508   .431   .416   .342   .222 
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Table 2a 
Summary Results for MTMM Data--Selected Criterion Variable  
_________________________________________________________________________ 
MSEs  
                                    n=35                          n=70                       n=140 
Method            ----------------------      ---------------------        ---------------------- 
OLS                 .421    .387    .426      .125    .142    .164        .064    .075    .079 
RIDGE            .309    .309    .310      .184     .200    .170       .085    .104    .101 
                         m=1  m=2   m=3       m=1    m=2   m=3        m=1   m=2   m=3 
MR       .148    .163    .174       .075    .094    .086        .052    .056    .054 
MR2      .125    .134    .141       .066    .086    .071        .047    .049    .046 
GFI       .140    .131    .134       .115    .100    .071        .105    .091    .056 
RR        .621    .244    .149       .590    .217    .095        .590    .203    .077 
 
PMSEs  
OLS      .089    .091    .082       .034    .034    .036        .016    .017    .016 
RIDGE    .072    .077    .069       .033    .035    .034        .016    .017    .016 
          m=1   m=2    m=3       m=1   m=2   m=3        m=1   m=2    m=3 
MR        .059    .057    .051       .027    .027    .026        .015    .014    .013 
MR2       .064    .056    .049       .030    .028    .025        .016    .014    .013 
GFI       .085    .061    .050       .076    .045    .029        .073    .041    .020 
RR        .459    .142    .067       .442    .113    .040        .440    .110    .028 
 
CROSS-VALID 
OLS   .032    .031    .028       .025    .025    .024       .023    .022    .023 
RIDGE    .030    .031    .026       .025    .025    .024       .023    .022    .023 

m=1   m=2    m=3     m=1    m=2    m=3       m=1    m=2   m=3 
MR       .029    .029    .025       .025    .024    .023       .023    .022    .023 
MR2      .030    .029    .025       .026    .025    .023       .023    .022    .023 
GFI       .032    .029    .025       .031    .026    .023       .027    .025    .024 
RR        .070    .037    .026       .069    .033    .024       .061    .031    .024 
GOF: (1-w) 
MR       .169    .284    .385       .100    .199    .291       .052    .114    .197 
GFI       .432    .544    .657       .464    .630    .736       .479    .657    .780 
 
_________________________________________________________________________ 
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Table 2b 
Summary Results for MTMM Data--Overall System 
_________________________________________________________________________ 
MSEs 
Method                      n=35                          n=70                         n=140               -------------
---------      ----------------------       ---------------------- 
OLS      .771    .770    .754       .293    .284    .317        .138    .154    .150 
RIDGE    .294    .295    .304       .194    .190    .191        .104    .115    .110 
           m=1    m=2   m=3      m=1    m=2   m=3        m=1   m=2    m=3 
MR       .273    .289    .279       .177    .166    .171        .101    .110    .100 
MR2      .231    .230    .231       .158    .147    .150        .092    .097    .092 
GFI      .238    .222    .224       .210    .184    .171        .191    .171    .154 
RR        .543    .349    .278       .534    .335    .240        .590    .323    .222 
 
PMSEs 
OLS      .148    .154    .153      .063    .061    .065        .028    .029    .029 
RIDGE    .094    .099    .102      .051    .051    .053        .026    .026    .026 
                       m=1    m=2   m=3      m=1   m=2   m=3        m=1   m=2    m=3 
MR       .086    .088    .091      .047    .046    .047        .025    .025    .024 
MR2      .081    .082    .085      .045    .046    .046        .024    .024    .023 
GFI       .088    .084    .085      .068    .064    .054        .060    .055    .040 
RR        .300    .152    .108      .285    .130    .075        .279    .119    .059 
 
CROSS-VALID  
OLS      .052    .052    .054      .044    .043    .044        .042    .040    .042 
RIDGE    .047    .047    .049      .043    .042    .043        .042    .040    .042 
                        m=1   m=2    m=3     m=1    m=2   m=3       m=1   m=2    m=3 
MR       .047    .046    .048      .043    .042    .043        .042    .040    .042 
MR2      .046    .046    .047      .043    .042    .042        .042    .040    .042 
GFI       .047    .046    .047      .045    .044    .043        .045    .043    .043 
RR        .069    .053    .049      .067    .050    .046        .064    .050    .045 
 
_________________________________________________________________________ 
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Table 3a 
Summary Results for Hauser Data, For Selected Criterion Variable 
_________________________________________________________________________ 
MSEs           
                                  n=35                          n=70                         n=140 
Method    ----------------------     ----------------------         ---------------------- 
OLS      .382    .376    .342      .155    .148    .156        .074    .064    .071RIDGE   
 .144    .140    .141      .094    .090    .098        .060    .050    .055                       m=1   
m=2    m=3      m=1   m=2   m=3        m=1   m=2    m=3 
MR       .109    .101    .114      .067    .058    .068        .047    .034    .037 
MR2      .076    .074    .089      .050    .047    .056        .039   .030     .034 
GFI       .066    .069    .085      .044   .045     .052        .040    .040    .040 
RR        .067    .069    .082      .059    .055    .057        .054    .051    .046 
 
PMSEs  
OLS      .219    .209    .195      .084    .081    .086        .041    .036    .040 
RIDGE    .099    .093    .094      .056    .055    .060        .034    .030    .033 
                       m=1    m=2   m=3     m=1    m=2   m=3        m=1   m=2    m=3 
MR       .076    .070    .078      .040    .038    .044        .027    .022    .023 
MR2      .056    .054    .064      .031    .031    .038        .023    .019    .021 
GFI       .049    .051    .062      .025    .028    .035        .020    .021    .022 
RR        .047    .049    .059      .032    .032    .037        .027    .026    .024 
 
CROSS VALID  
OLS      .061    .062    .058      .051    .048    .052        .046    .047    .045 
RIDGE    .050    .051    .049      .048    .046    .049        .045    .046    .045 
                        m=1   m=2   m=3      m=1   m=2    m=3       m=1   m=2    m=3 
MR       .048    .049    .047      .047    .044    .047        .045    .046    .044 
MR2      .046    .047    .046      .046    .043    .047        .044    .045    .044 
GFI       .045    .047    .045      .046    .043    .046        .044    .046    .044 
RR        .045    .047    .045      .047    .044    .046        .045    .046    .044 
 
GOF: 1-w 
MR       .367    .452    .493      .291    .405    .459        .196    .324    .408 
GFI       .621    .680    .713      .704    .782    .820        .743    .836    .887 
 
_________________________________________________________________________ 
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Table 3b 
Summary Results for Hauser Data--Overall System            
_________________________________________________________________________ 
MSEs 
                                   n=35                          n=70                         n=140 
Method           ---------------------        ----------------------        ---------------------- 
OLS      .501    .526    .482       .212    .208    .198        .093    .087    .089 
RIDGE    .189    .190    .188       .127    .124    .121        .073    .068    .070 
                       m=1    m=2   m=3      m=1   m=2    m=3       m=1   m=2    m=3 
MR       .152    .152    .170       .096    .085    .089        .059    .048    .049 
MR2      .111    .115    .136       .076    .071    .075        .051    .044    .044 
GFI       .101    .108    .130       .078    .073    .072        .073    .064    .052 
RR        .140    .116    .126       .134    .098    .082        .130    .088    .060 
 
PMSEs 
OLS      .280    .283    .266       .113    .110    .108        .050    .048    .048 
RIDGE    .127    .126    .125       .076    .075    .074        .042    .040    .040 
                       m=1    m=2   m=3       m=1   m=2    m=3        m=1  m=2   m=3 
MR       .105    .105    .116       .061    .057    .059        .035    .031    .031 
MR2     .086    .087    .100       .053    .051    .053        .032    .030    .030 
GFI       .083    .083    .098       .063    .054    .053        .057    .042    .035 
RR        .131    .091    .099       .117    .070    .059        .111    .056    .039 
 
CROSS VALID 
OLS      .082    .082    .079       .065    .065    .064        .059    .058    .059 
RIDGE    .068    .067    .066       .062    .062    .061        .058    .058    .058 
                       m=1    m=2   m=3      m=1   m=2    m=3        m=1  m=2   m=3 
MR       .066    .065    .065       .060    .060    .059        .058    .057    .057 
MR2     .064    .063    .064       .060    .059    .059        .058    .057    .057 
GFI       .063    .063    .063       .061    .059    .059        .060    .058    .058 
RR       .068    .063    .063       .066    .061    .059        .065    .060    .058 
 

_________________________________________________________________________ 
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Table 4 
Estimated Relative Efficiencies for Mean Squared Errors and Predictive Mean Squared 
Errors in the presence of Contaminated Data: Hauser Problem  

       Mean Squared Errorsa Pred. Mean Squared Errorsb 
m = 2  n = 60 n = 120 n = 60 n = 120 
Method  k=2% k=5% k=2% k=5% k=2% k=5% k=2% k=5% 

OLS .27 .44 .23 .29 .15 .23 .11 .14 
Ridge 1.77 1.66 1.33 1.35 1.56 1.44 1.23 1.24 
MR 2.07 1.65 1.51 1.38 1.72 1.40 1.33 1.24 
MR2 2.46 1.93 1.75 1.60 1.82 1.47 1.40 1.31 
GFI 2.51 2.10 1.81 1.81 1.63 1.39 1.08 1.08 
RedR 1.78 1.76 1.35 1.40 1.02 .90 .70 .68 

m = 3 n = 60 n = 120 n = 60 n = 120 

Method k=2% k=5% k=2% k=5% k=2% k=5% k=2% k=5% 

OLS .29 .51 .21 .33 .15 .26 .10 .16 
Ridge 1.76 1.80 1.31 1.36 1.52 1.56 1.20 1.23 
MR 2.00 1.68 1.49 1.39 1.64 1.47 1.29 1.24 
MR2 2.29 1.98 1.67 1.59 1.73 1.60 1.33 1.31 
GFI 2.38 2.20 1.74 1.81 1.67 1.60 1.21 1.22 
RR 2.12 2.10 1.61 1.62 1.41 1.28 1.06 .95 

m = 4  n = 60 n = 120 n = 60 n = 120 

Method k=2% k=5% k=2% k=5% k=2% k=5% k=2% k=5% 

OLS .35 .38 .20 .38 .18 .20 .10 .18 
MR Ridge 1.75 1.78 1.35 1.36 1.51 1.51 1.24 1.21 
MR 1.84 1.67 1.53 1.31 1.57 1.44 1.33 1.20 
MR2 2.08 1.85 1.68 1.45 1.68 1.50 1.38 1.25 
GFI 2.21 1.93 1.74 1.61 1.71 1.49 1.32 1.26 
RR 2.17 1.85 1.67 1.60 1.63 1.36 1.23 1.18 

a  Table entries represent the average across 100 samples. For each value of m the first row is the actual OLS 
BMSE. Subsequent rows give ratios of overall OLS BMSE to the BMSE of the given method. Ratios greater 
than 1.00 indicate advantages of the alternative methods. The best value for each column is printed in bold 
type face. 

b For each value of m the first row is the actual OLS Predicted Mean Squared Error (PMSE) followed by the 
PMSE ratios for the other methods. PMSE ratios are calculated in a manner identical to that of the BMSE 
ratios. 


