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Factor Analysis:
Exploratory

Introduction

This year marks the one hundredth anniversary for
exploratory factor analysis (EFA), a method intro-
duced by Charles Spearman in 1904 [21]. It is
testimony to the deep insights of Spearman as well
as many who followed that EFA continues to be cen-
tral to multivariate analysis so many years after its
introduction. In a recent search of electronic sources,
where I restricted attention to the psychological and
social sciences (using PsychINFO), more than 20 000
articles and books were identified in which the term
‘factor analysis’ had been used in the summary, well
over a thousand citations from the last decade alone.

EFA, as it is known today, was for many years
called common factor analysis. The method is in
some respects similar to another well-known method
called principal component analysis (PCA) and
because of various similarities, these methods are
frequently confused. One of the purposes of this
article will be to try to dispel at least some of
the confusion.

The general methodology currently seen as an
umbrella for both exploratory factor analysis and
confirmatory factor analysis (see Factor Analysis:
Confirmatory) is called structural equation mod-
eling (SEM) Although EFA can be described as an
exploratory or unrestricted structural equation model,
it would be a shame to categorize EFA as nothing
more than a SEM, as doing so does an injustice to
its long history as the most used and most studied
latent variable method in the social and behavioral
sciences. This is somewhat like saying that analy-
sis of variance (ANOVA) which has been on the
scene for more than seventy-five years and which is
prominently related to experimental design, is just
a multiple linear regression model. There is some
truth to each statement, but it is unfair to the rich his-
tories of EFA and ANOVA to portray their boundaries
so narrowly.

A deeper point about the relationships between
EFA and SEM is that these methods appeal to
very different operational philosophies of science.
While SEMs are standardly seen as founded on
rather strict hypothetico-deductive logic, EFAs are

not. Rather, EFA generally invokes an exploratory
search for structure that is open to new structures
not imagined prior to analysis. Rozeboom [20] has
carefully examined the logic of EFA, using the
label explanatory induction to describe it; this term
neatly summarizes EFA’s reliance on data to induce
hypotheses about structure, and its general concern
for explanation.

Several recent books, excellent reviews, and con-
structive critiques of EFA have become available to
help understand its long history and its potential for
effective use in modern times [6, 8, 15, 16, 23, 25].
A key aim of this article is to provide guidance with
respect to literature about factor analysis, as well as
to software to aid applications.

Basic Ideas of EFA Illustrated

Given a matrix of correlations or covariances (see
Correlation and Covariance Matrices) among a
set of manifest or observed variables, EFA entails
a model whose aim is to explain or account for
correlations using a smaller number of ‘underlying
variables’ called common factors. EFA postulates
common factors as latent variables so they are
unobservable in principle. Spearman’s initial model,
developed in the context of studying relations among
psychological measurements, used a single common
factor to account for all correlations among a battery
of tests of intellectual ability. Starting in the 1930s,
Thurstone generalized the ‘two-factor’ method of
Spearman so that EFA became a multiple (common)
factor method [22]. In so doing, Thurstone effectively
broadened the range of prospective applications in
science. The basic model for EFA today remains
largely that of Thurstone. EFA entails an assumption
that there exist uniqueness factors as well as
common factors, and that these two kinds of factors
complement one another in mutually orthogonal
spaces. An example will help clarify the central ideas.

Table 1 below contains a correlation matrix for
all pairs of five variables, the first four of which
correspond to ratings by the seventeenth century art
critic de Piles (using a 20 point scale) of 54 painters
for whom data were complete [7]. Works of these
painters were rated on four characteristics: composi-
tion, drawing, color, and expression. Moreover, each
painter was associated with a particular ‘School.” For
current purposes, all information about Schools is
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Table 1 Correlations among pairs of variables, painter data of [8]

Composition Drawing Color Expression School D
Composition 1.00
Drawing 0.42 1.00
Color —0.10 —0.52 1.00
Expression 0.66 0.57 —-0.20 1.00
School D -0.29 —0.36 0.53 —0.45 1.00

ignored except for distinguishing the most distinc-
tive School D (Venetian) from the rest using a binary
variable. For more details, see the file ‘painters’ in
the Modern Applied Statistics with S (MASS) library
in R or Splus software (see Software for Statisti-
cal Analyses), and note that the original data and
several further analyses can be found in the MASS
library [24].

Table 1 exhibits correlations among the painter
variables, where upper triangle entries are ignored
since the matrix is symmetric. Table 2 exhibits a
common factor coefficients matrix (of order 5 x 2)
that corresponds to the initial correlations, where
entries of highest magnitude are in bold print. The
final column of Table 2 is labeled h2, the stan-
dard notation for variable communalities. Because
these factor coefficients correspond to an orthog-
onal factor solution, that is, uncorrelated common
factors, each communality can be reproduced as a
(row) sum of squares of the two factor coefficients
to its left; for example (0.76)%> + (—0.09)% = 0.59.
The columns labeled 1 and 2 are factor loadings,
each of which is properly interpreted as a (product-
moment) correlation between one of the original
manifest variables (rows) and a derived common
factor (columns). Post-multiplying the factor coef-
ficient matrix by its transpose yields numbers that

Table 2 Factor loadings for 2-factor EFA solution, painter
data

Factor

Variable name 1 2 h?

Composition 0.76 —0.09 0.59
Drawing 0.50 —0.56 0.56
Color —0.03 0.80 0.64
Expression 0.81 —0.26 0.72
School D —0.30 0.62 0.47
Avg. Col. SS 0.31 0.28 0.60

approximate the corresponding entries in the corre-
lation matrix. For example, the inner product of the
rows for Composition and Drawing is 0.76 x 0.50 +
(—0.09) x (—0.56) = 0.43, which is close to 0.42,
the observed correlation; so the corresponding resid-
ual equals —0.01. Pairwise products for all rows
reproduce the observed correlations in Table 1 quite
well as only one residual fit exceeds 0.05 in magni-
tude, and the mean residual is 0.01.

The final row of Table 2 contains the average
sum of squares for the first two columns; the third
entry is the average of the communalities in the final
column, as well as the sum of the two average sums of
squares to its left: 0.31 4+ 0.28 ~ 0.60. These results
demonstrate an additive decomposition of common
variance in the solution matrix where 60 percent
of the total variance is common among these five
variables, and 40 percent is uniqueness variance.

Users of EFA have often confused communality
with reliability, but these two concepts are quite dis-
tinct. Classical common factor and psychometric test
theory entail the notion that the uniqueness is the sum
of two (orthogonal) parts, specificity and error. Con-
sequently, uniqueness variance is properly seen as an
upper bound for error variance; alternatively, commu-
nality is in principle a lower bound for reliability. It
might help to understand this by noting that each EFA
entails analysis of just a sample of observed variables
or measurements in some domain, and that the addi-
tion of more variables within the general domain will
generally increase shared variance as well as indi-
vidual communalities. As battery size is increased,
individual communalities increase toward upper lim-
its that are in principle close to variable reliabilities.
See [15] for a more elaborate discussion.

To visualize results for my example, I plot the
common factor coefficients in a plane, after making
some modifications in signs for selected rows and the
second column. Specifically, I reverse the signs of the
3rd and 5th rows, as well as in the second column, so
that all values in the factor coefficients matrix become
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positive. Changes of this sort are always permissible,
but we need to keep track of the changes, in this case
by renaming the third variable to ‘Color[—1]" and the
final binary variable to ‘School.D[—1]’. Plotting the
revised coefficients by rows yields the five labeled
points of Figure 1.

In addition to plotting points, I have inserted vec-
tors to correspond to ‘transformed’ factors; the arrows
show an ‘Expression—Composition’ factor and a sec-
ond, correlated, ‘Drawing—Color[—1]" factor. That
the School.D variable also loads highly on this second
factor, and is also related to, that is, not orthogo-
nal to, the point for Expression, shows that mean
ratings, especially for the Drawing, Expression, and
Color variates (the latter in an opposite direction), are
notably different between Venetian School artists and
painters from the collection of other schools. This can
be verified by examination of the correlations (some-
times called point biserials) between the School.D
variable and all the ratings variables in Table 1; the
skeptical reader can easily acquire these data and
study details. In fact, one of the reasons for choosing
this example was to show that EFA as an exploratory
data analytic method can help in studies of relations
among quantitative and categorical variables. Some
connections of EFA with other methods will be dis-
cussed briefly in the final section.

In modern applications of factor analysis, inves-
tigators ordinarily try to name factors in terms
of dimensions of individual difference variation, to
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Figure 1 Plot of variables-as-points in 2-factor space,
painter data

identify latent variables that in some sense appear to
‘underlie’ observed variables. In this case, my igno-
rance of the works of these classical painters, not to
mention of the thinking of de Piles as related to his
ratings, led to my literal, noninventive factor names.

Before going on, it should be made explicit that
insertion of the factor-vectors into this plot, and the
attempt to name factors, are best regarded as discre-
tionary parts of the EFA enterprise. The key output
of such an analysis is the identification of the sub-
space defined by the common factors, within which
variables can be seen to have certain distinctive struc-
tural relationships with one another. In other words,
it is the configuration of points in the derived space
that provides the key information for interpreting
factor results; a relatively low-dimensional subspace
provides insights into structure, as well as quan-
tification of how much variance variables have in
common. Positioning or naming of factors is gener-
ally optional, however common. When the common
number of derived factors exceeds two or three, fac-
tor transformation is an almost indispensable part of
an EFA, regardless of whether attempts are made to
name factors.

Communalities generally provide information as
to how much variance variables have in common
or share, and can sometimes be indicative of how
highly predictable variables are from one another. In
fact, the squared multiple correlation of each variable
with all others in the battery is often recommended
as an initial estimate of communality for each vari-
able. Communalities can also signal (un)reliability,
depending on the composition of the battery of vari-
ables, and the number of factors; recall the foregoing
discussion on this matter.

Note that there are no assumptions that point
configurations for variables must have any particular
form. In this sense, EFA is more general than many of
its counterparts. Its exploratory nature also means that
prior structural information is usually not part of an
EFA, although this idea will eventually be qualified
in the context of reviewing factor transformations.
Even so, clusters or hierarchies of either variables
or entities may sometimes be identified in EFA
solutions. In our example, application of the common
factor method yields a relatively parsimonious model
in the sense that two common factors account for all
relationships among variables. However, EFA was,
and is usually, antiparsimonious in another sense as
there is one uniqueness factor for each variable as
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well as common factors to account for all entries in
the correlation table.

Some Relationships Between EFA and
PCA

As noted earlier, EFA is often confused with PCA.
In fact, misunderstanding occurs so often in reports,
published articles, and textbooks that it will be useful
to describe how these methods compare, at least
in a general way. More detailed or more technical
discussions concerning such differences is available
in [15].

As noted, the key aim of EFA is usually to derive a
relatively small number of common factors to explain
or account for (off-diagonal) covariances or correla-
tions among a set of observed variables. However,
despite being an exploratory method, EFA entails
use of a falsifiable model at the level of manifest
observations or correlations (covariances). For such
a model to make sense, relationships among mani-
fest variables should be approximately linear. When
approximate linearity does not characterize relation-
ships among variables, attempts can be made to trans-
form (at least some of) the initial variables to ‘remove
bends’ in their relationships with other variables,
or perhaps to remove outliers. Use of square root,
logarithmic, reciprocal, and other nonlinear transfor-
mations are often effective for such purposes. Some
investigators question such steps, but rather than
asking why nonlinear transformations should be con-
sidered, a better question usually is, ‘Why should
the analyst believe the metric used at the outset
for particular variables should be expected to render
relationships linear, without reexpressions or transfor-
mations?” Given at least approximate linearity among
all pairs of variables — the inquiry about which is
greatly facilitated by examining pairwise scatterplots
among all pairs of variables — common factor anal-
ysis can often facilitate explorations of relationships
among variables. The prospects for effective or pro-
ductive applications of EFA are also dependent on
thoughtful efforts at the stage of study design, a mat-
ter to be briefly examined below. With reference to
our example, the pairwise relationships between the
various pairs of de Pile’s ratings of painters were
found to be approximately linear.

In contrast to EFA, principal components analysis
does not engage a model. PCA generally entails

an algebraic decomposition of an initial data matrix
into mutually orthogonal derived variables called
components. Alternatively, PCA can be viewed as
a linear transformation of the initial data vectors
into uncorrelated variates with certain optimality
properties. Data are usually centered at the outset
by subtracting means for each variable and then
scaled so that all variances are equal, after which
the (rectangular) data matrix is resolved using a
method called singular value decomposition (SVD).
Components from a SVD are usually ordered so that
the first component accounts for the largest amount
of variance, the second the next largest amount,
subject to the constraint that it be uncorrelated with
the first, and so forth. The first few components
will often summarize the majority of variation in
the data, as these are principal components. When
used in this way, PCA is justifiably called a data
reduction method and it has often been successful in
showing that a rather large number of variables can
be summarized quite well using a relatively small
number of derived components.

Conventional PCA can be completed by simply
computing a table of correlations of each of the
original variables with the chosen principal compo-
nents; indeed doing so yields a PCA counterpart of
the EFA coefficients matrix in Table 2 if two com-
ponents are selected. Furthermore, sums of squares
of correlations in this table, across variables, show
the total variance each component explains. These
component-level variances are the eigenvalues pro-
duced when the correlation matrix associated with the
data matrix is resolved into eigenvalues and eigenvec-
tors. Alternatively, given the original (centered and
scaled) data matrix, and the eigenvalues and vectors
of the associated correlation matrix, it is straightfor-
ward to compute principal components. As in EFA,
derived PCA coefficient matrices can be rotated or
transformed, and for purposes of interpretation this
has become routine.

Given its algebraic nature, there is no particular
reason for transforming variables at the outset so that
their pairwise relationships are even approximately
linear. This can be done, of course, but absent a
model, or any particular justification for concentrat-
ing on pairwise linear relationships among variables,
principal components analysis of correlation matri-
ces is somewhat arbitrary. Because PCA is just an
algebraic decomposition of data, it can be used for
any kind of data; no constraints are made about the
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dimensionality of the data matrix, no constraints on
data values, and no constraints on how many compo-
nents to use in analyses. These points imply that for
PCA, assumptions are also optional regarding statis-
tical distributions, either individually or collectively.
Accordingly, PCA is a highly general method, with
potential for use for a wide range of data types or
forms. Given their basic form, PCA methods provide
little guidance for answering model-based questions,
such as those central to EFA. For example, PCA gen-
erally offers little support for assessing how many
components (‘factors’) to generate, or try to interpret;
nor is there assistance for choosing samples or extrap-
olating beyond extant data for purposes of statistical
or psychometric generalization. The latter concerns
are generally better dealt with using models, and EFA
provides what in certain respects is one of the most
general classes of models available.

To make certain other central points about PCA
more concrete, I return to the correlation matrix for
the painter data. I also conducted a PCA with two
components (but to save space I do not present the
table of ‘loadings’).

That is, I constructed the first two principal
component variables, and found their correlations
with the initial variables. A plot (not shown) of
the principal component loadings analogous to that
of Figure 1 shows the variables to be configured
similarly, but all points are further from the origin.
The row sums of squares of the component loadings
matrix were 0.81, 0.64, 0.86, 0.83, and 0.63, values
that correspond to communality estimates in the third
column of the common factor matrix in Table 2.
Across all five variables, PCA row sums of squares
(which should not be called communalities) range
from 14 to 37 percent larger than the h? entries
in Table 2, an average of 27 percent; this means
that component loadings are substantially larger in
magnitude than their EFA counterparts, as will be
true quite generally. For any data system, given the
same number of components as common factors,
component solutions yield row sums of squares that
tend to be at least somewhat, and often markedly,
larger than corresponding communalities.

In fact, these differences between characteristics of
the PCA loadings and common factor loadings sig-
nify a broad point worthy of discussion. Given that
principal components are themselves linear combina-
tions of the original data vectors, each of the data
variables tends to be part of the linear combination

with which it is correlated. The largest weights for
each linear combination correspond to variables that
most strongly define the corresponding linear combi-
nation, and so the corresponding correlations in the
Principal Component (PC) loading matrix tend to be
highest, and indeed to have spuriously high mag-
nitudes. In other words, each PC coefficient in the
matrix that constitutes the focal point for interpre-
tation of results, tends to have a magnitude that is
‘too large’ because the corresponding variable is cor-
related partly with itself, the more so for variables
that are largest parts of corresponding components.
Also, this effect tends to be exacerbated when princi-
pal components are rotated. Contrastingly, common
factors are latent variables, outside of the space of
the data vectors, and common factor loadings are
not similarly spurious. For example, EFA loadings
in Table 2, being correlations of observed variables
with latent variables, do not reflect self-correlations,
as do their PCA counterparts.

The Central EFA Questions: How Many
Factors? What Communalities?

Each application of EFA requires a decision about
how many common factors to select. Since the com-
mon factor model is at best an approximation to the
real situation, questions such as how many factors,
or what communalities, are inevitably answered with
some degree of uncertainty. Furthermore, particular
features of given data can make formal fitting of an
EFA model tenuous. My purpose here is to present
EFA as a true exploratory method based on com-
mon factor principles with the understanding that
formal ‘fitting’ of the EFA model is secondary to
‘useful’ results in applications; moreover, I accept
that certain decisions made in contexts of real data
analysis are inevitably somewhat arbitrary and that
any given analysis will be incomplete. A wider per-
spective on relevant literature will be provided in the
final section.

The history of EFA is replete with studies of
how to select the number of factors; hundreds of
both theoretical and empirical approaches have been
suggested for the number of factors question, as this
issue has been seen as basic for much of the past
century. I shall summarize some of what I regard as
the most enduring principles or methods, while trying
to shed light on when particular methods are likely
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to work effectively, and how the better methods can
be attuned to reveal relevant features of extant data.

Suppose scores have been obtained on some num-
ber of correlated variables, say p, for n entities,
perhaps persons. To entertain a factor analysis (EFA)
for these variables generally means to undertake
an exploratory structural analysis of linear relations
among the p variables by analyzing a p x p covari-
ance or correlation matrix. Standard outputs of such
an analysis are a factor loading matrix for orthogonal
or correlated common factors as well as communal-
ity estimates, and perhaps factor score estimates. All
such results are conditioned on the number, m, of
common factors selected for analysis. I shall assume
that in deciding to use EFA, there is at least some
doubt, a priori, as to how many factors to retain, so
extant data will be the key basis for deciding on the
number of factors. (I shall also presume that the data
have been properly prepared for analysis, appropriate
nonlinear transformations made, and so on, with the
understanding that even outwardly small changes in
the data can affect criteria bearing on the number of
factors, and more.)

The reader who is even casually familiar with EFA
is likely to have learned that one way to select the
number of factors is to see how many eigenvalues (of
the correlation matrix; recall PCA) exceed a certain
criterion. Indeed, the ‘roots-greater-than-one’ rule has
become a default in many programs. Alas, rules of
this sort are generally too rigid to serve reliably
for their intended purpose; they can lead either to
overestimates or underestimates of the number of
common factors. Far better than using any fixed
cutoff is to understand certain key principles and
then learn some elementary methods and strategies
for choosing m. In some cases, however, two or more
values of m may be warranted, in different solutions,
to serve distinctive purposes for different EFAs of the
same data.

A second thing even a nonspecialist may have
learned is to employ a ‘scree’ plot (SP) to choose
the number of factors in EFA. An SP entails plotting
eigenvalues, ordered from largest to smallest, against
their ordinal position, 1, 2, ..., and so on. Ordinarily,
the SP is based on eigenvalues of a correlation
matrix [5]. While the usual SP sometimes works
reasonably well for choosing m, there is a mismatch
between such a standard SP, and another relevant
fact: a tacit assumption of this method is that all p
communalities are the same. But to assume equal

communalities is usually to make a rather strong
assumption, one quite possibly not supported by data
in hand.

A better idea for SP entails computing the original
correlation matrix, R, as well as its inverse R~!. Then,
denoting the diagonal of the inverse as D? (entries
of which exceed unity), rescale the initial correlation
matrix to DRD, and then compute eigenvalues of
this rescaled correlation matrix. Since the largest
entries in D? correspond to variables that are most
predictable from all others, and vice versa, the
effect is to weigh variables more if they are more
predictable, less if they are less predictable from
other variables in the battery. (The complement of
the reciprocal of any D? entry is in fact the squared
multiple correlation (SMC) of that variable with all
others in the set.) An SP based on eigenvalues of
DRD allows for variability of communalities, and is
usually realistic in assuming that communalities are
at least roughly proportional to SMC values.

Figure 2 provides illustrations of two scree plots
based on DRD, as applied to two simulated random
samples. Although real data were used as the starting
point for each simulation, both samples are just
simulation sets of (the same size as) the original
data set, where four factors had consistently been
identified as the ‘best’ number to interpret.

Each of these two samples yields a scree plot, and
both are given in Figure 2 to provide some sense
of sampling variation inherent in such data; in this
case, each plot leads to breaks after four common
factors — where the break is found by reading the plot
from right to left. But the slope between four and five
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Figure 2 Two scree plots, for two simulated data sets,
each n = 145
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factors is somewhat greater for one sample than the
other, so one sample identifies m as four with slightly
more clarity than the other. In fact, for some other
samples examined in preparing these scree plots,
breaks came after three or five factors, not just four.
Note that for smaller samples greater variation can
be expected in the eigenvalues, and hence the scree
breaks will generally be less reliable indicators of the
number of common factors for smaller samples.

So what is the principle behind the scree method?
The answer is that the variance of the p — m small-
est eigenvalues is closely related to the variance
of residual correlations associated with fitting off-
diagonals of the observed correlation matrix in suc-
cessive choices for m, the number of common factors.
When a break occurs in the eigenvalue plot, it signi-
fies a notable drop in the sum of squares of residual
correlations after fitting the common factor model
to the observed correlation matrix for a particular
value of m. I have constructed a horizontal line in
Figure 2 to correspond to the mean of the 20 smallest
eigenvalues (24—4) of DRD, to help see the variation
these so-called ‘rejected’ eigenvalues have around
their mean. In general, it is the variation around such
a mean of rejected eigenvalues that one seeks to
reduce to a ‘reasonable’ level when choosing m in the
EFA solution, since a ‘good’ EFA solution accounts
well for the off-diagonals of the correlation matrix.
Methods such as bootstrapping — wherein multiple
versions of DRD are generated over a series of boot-
strap samples of the original data matrix — can be
used to get a clearer sense of sampling variation,
and probably should become part of standard prac-
tice in EFA both at the level of selecting the number
of factors, and assessing variation in various derived
EFA results.

When covariances or correlations are well fit by
some relatively small number of common factors,
then scree plots often provide flexible, informative,
and quite possibly persuasive evidence about the
number of common factors. However, SPs alone can
be misleading, and further examination of data may
be helpful. The issue in selecting m vis-a-vis the
SP concerns the nature or reliability of the informa-
tion in eigenvectors associated with corresponding
eigenvalues. Suppose some number m* is seen as a
possible underestimate for m; then deciding to add
one more factor to have m* + 1 factors, is to decide
that the additional eigenvector adds useful or mean-
ingful structural information to the EFA solution. It is

possible that m* is an ‘underestimate’ solely because
a single correlation coefficient is poorly fit, and that
adding a common factor merely reduces a single
‘large’ residual correlation. But especially if the use
of m* 4+ 1 factors yields a factor loading matrix that
upon rotation (see below) improves interpretability
in general, there may be ex post facto evidence that
m* was indeed an underestimate. Similar reasoning
may be applied when moving to m* + 2 factors, etc.
Note that sampling variation can also result in sample
reordering of so-called population eigenvectors too.

An adjunct to an SP that is too rarely used
is simply to plot the distribution of the residual
correlations, either as a histogram, or in relation to the
original correlations, for, say, m,m + 1, and m + 2
factors in the vicinity of the scree break; outliers or
other anomalies in such plots can provide evidence
that goes usefully beyond the SP when selecting m.
Factor transformation(s) (see below) may be essential
to one’s final decision. Recall that it may be a folly
even to think there is a single ‘correct’ value for m
for some data sets.

Were one to use a different selection of variables
to compose the data matrix for analysis, or per-
haps make changes in the sample (deleting or adding
cases), or try various different factoring algorithms,
further modifications may be expected about the num-
ber of common factors. Finally, there is always the
possibility that there are simply too many distinctive
dimensions of individual difference variation, that is,
common factors, for the EFA method to work effec-
tively in some situations. It is not unusual that more
variables, larger samples, or generally more investiga-
tive effort, are required to resolve some basic ques-
tions such as how many factors to use in analysis.

Given some choice for m, the next decision is
usually that of deciding what factoring method to
use. The foregoing idea of computing DRD, finding
its eigenvalues, and producing an SP based on those,
can be linked directly to an EFA method called image
factor analysis (IFA) [13], which has probably been
underused, in that several studies have found it to
be a generally sound and effective method. IFA is
a noniterative method that produces common factor
coefficients and communalities directly. IFA is based
on the m largest eigenvalues, say, the diagonal entries
of I, and corresponding eigenvectors, say Q,,, of
the matrix denoted DRD, above. Given a particular
factor method, communality estimates follow directly
from selection of the number of common factors.
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The analysis usually commences from a correlation
matrix, so communality estimates are simply row
sums of squares of the (orthogonal) factor coefficients
matrix that for m common factors is computed as
Ay =D71Q, (I, — ¢ D2, where ¢ is the average
of the p— m smallest eigenvalues. IFA may be
especially defensible for EFA when sample size is
limited; more details are provided in [17], including
a sensible way to modify the diagonal D?> when
the number of variables is a ‘substantial fraction’ of
sample size.

A more commonly used EFA method is called
maximum likelihood factor analysis (MLFA) for
which algorithms and software are readily available,
and generally well understood. The theory for this
method has been studied perhaps more than any
other and it tends to work effectively when the EFA
problem has been well-defined and the data are ‘well-
behaved.” Specialists regularly advocate use of the
MLFA method [1, 2, 16, 23], and it is often seen as
the common factor method of choice when the sample
is relatively large. Still, MLFA is an iterative method
that can lead to poor solutions, so one must be alert in
case it fails in some way. Maximum likelihood EFA
methods generally call for large n’s, using an assump-
tion that the sample has been drawn randomly from
a parent population for which multivariate normality
(see Catalogue of Probability Density Functions)
holds, at least approximately; when this assumption is
violated seriously, or when sample size is not ‘large,’
MLFA may not serve its exploratory purpose well.
Statistical tests may sometimes be helpful, but the
sample size issue is vital if EFA is used for test-
ing statistical hypotheses. There can be a mismatch
between exploratory use of EFA and statistical test-
ing because small samples may not be sufficiently
informative to reject any factor model, while large
samples may lead to rejection of every model in some
domains of application. Generally scree methods for
choosing the number of factors are superior to statis-
tical testing procedures.

Given a choice of factoring methods — and of
course there are many algorithms in addition to
IFA and MLFA - the generation of communality
estimates follows directly from the choice of m, the
number of common factors. However, some EFA
methods or algorithms can yield numerically unstable
results, particularly if m is a substantial fraction of p,
the number of variables, or when n is not large in
relation to p. Choice of factor methods, like many

other methodological decisions, is often best made in
consultation with an expert.

Factor Transformations to Support EFA
Interpretation

Given at least a tentative choice for m, EFA methods
such as IFA or MLFA can be used straightforwardly
to produce matrices of factor coefficients to account
for structural relations among variables. However,
attempts to interpret factor coefficient matrices with-
out further efforts to transform factors usually fall
short unless m = 1 or 2, as in our illustration. For
larger values of m, factor transformation can bring
order out of apparent chaos, with the understanding
that order can take many forms. Factor transformation
algorithms normally take one of three forms: Pro-
crustes fitting to a prespecified target (see Procrustes
Analysis), orthogonal simple structure, or oblique
simple structure. All modern methods entail use of
specialized algorithms. I shall begin with Procrustean
methods and review each class of methods briefly.
Procrustean methods owe their name to a figure
of ancient Greek mythology, Procrustes, who made
a practice of robbing highway travelers, tying them
up, and stretching them, or cutting off their feet
to make them fit a rigid iron bed. In the context
of EFA, Procrustes methods are more benign; they
merely invite the investigator to prespecify his or her
beliefs about structural relations among variables in
the form of a target matrix, and then transform an
initial factor coefficients matrix to put it in relatively
close conformance with the target. Prespecification
of configurations of points in m-space, preferably
on the basis of hypothesized structural relations that
are meaningful to the investigator, is a wise step
for most EFAs even if Procrustes methods are not
to be used explicitly for transformations. This is
because explication of beliefs about structures can
afford (one or more) reference system(s) for inter-
pretation of empirical data structures however they
were initially derived. It is a long-respected princi-
ple that prior information, specified independently of
extant empirical data, generally helps to support sci-
entific interpretations of many kinds, and EFA should
be no exception. In recent times, however, meth-
ods such as confirmatory factor analysis (CFA), are
usually seen as making Procrustean EFA methods
obsolete because CFA methods offer generally more
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sophisticated numerical and statistical machinery to
aid analyses. Still, as a matter of principle, it is use-
ful to recognize that general methodology of EFA has
for over sixty years permitted, and in some respects
encouraged, incorporation of sharp prior questions in
structural analyses.

Orthogonal rotation algorithms provide relatively
simple ways for transforming factors and these
have been available for nearly forty years. Most
commonly, an ‘orthomax’ criterion is optimized,
using methods that have been dubbed ‘quartimax’,
‘varimax’, or ‘equamax.’ Dispensing with quotations,
we merely note that in general, equamax solutions
tend to produce simple structure solutions for which
different factors account for nearly equal amounts of
common variance; quartimax, contrastingly, typically
generates one broad or general factor followed by
m — 1 ‘smaller’ ones; varimax produces results inter-
mediate between these extremes. The last, varimax,
is the most used of the orthogonal simple structure
rotations, but choice of a solution should not be based
too strongly on generic popularity, as particular fea-
tures of a data set can make other methods more
effective. Orthogonal solutions offer the appealing
feature that squared common factor coefficients show
directly how much of each variable’s common vari-
ance is associated with each factor. This property is
lost when factors are transformed obliquely. Also, the
factor coefficients matrix alone is sufficient to inter-
pret orthogonal factors; not so when derived factors
are mutually correlated. Still, forcing factors to be
uncorrelated can be a weakness when the constraint
of orthogonality limits factor coefficient configura-
tions unrealistically, and this is a common occurrence
when several factors are under study.

Oblique transformation methods allow factors to
be mutually correlated. For this reason, they are
more complex and have a more complicated his-
tory. A problem for many years was that by allowing
factors to be correlated, oblique transformation meth-
ods often allowed the m-factor space to collapse;
successful methods avoided this unsatisfactory situ-
ation while tending to work well for wide varieties
of data. While no methods are entirely acceptable
by these standards, several, notably those of Jen-
nrich and Sampson (direct quartimin) [12], Harris
and Kaiser (obliquimax), Rozeboom (Hyball) [18],
Yates (geomin) [25], and Hendrikson and White (pro-
max) [9] are especially worthy of consideration for

applications. Browne [2], in a recent overview of ana-
lytic rotation methods for EFA, stated that Jennrich
and Sampson [12] ‘solved’ the problems of oblique
rotation; however, he went on to note that ‘... we
are not at a point where we can rely on mechan-
ical exploratory rotation by a computer program if
the complexity of most variables is not close to one
[2, p. 145]. Methods such as Hyball [19] facilitate
random starting positions in m-space of transforma-
tion algorithms to produce multiple solutions that
can then be compared for interpretability. The pro-
max method is notable not only because it often
works well, but also because it combines elements
of Procrustean logic with analytical orthogonal trans-
formations. Yates’ geomin [25] is also a particularly
attractive method in that the author went back to
Thurstone’s basic ideas for achieving simple struc-
ture and developed ways for them to be played out in
modern EFA applications. A special reason to favor
simple structure transformations is provided in [10,
11] where the author noted that standard errors of fac-
tor loadings will often be substantially smaller when
population structures are simple than when they are
not; of course this calls attention to the design of the
battery of variables.

Estimation of Factor Scores

It was noted earlier that latent variables, that is,
common factors, are basic to any EFA model. A
strong distinction is made between observable vari-
ates and the underlying latent variables seen in EFA
as accounting for manifest correlations or covariances
between all pairs of manifest variables. The latent
variables are by definition never observed or observ-
able in a real data analysis, and this is not related to
the fact that we ordinarily see our data as a sample (of
cases, or rows); latent variables are in principle not
observable, either for statistically defined samples, or
for their population counterparts. Nevertheless, it is
not difficult to estimate the postulated latent vari-
ables, using linear combinations of the observed data.
Indeed, many different kinds of factor score estimates
have been devised over the years (see Factor Score
Estimation).

Most methods for estimating factor scores are not
worth mentioning because of one or another kind
of technical weakness. But there are two methods
that are worthy of consideration for practical appli-
cations in EFA where factor score estimates seem
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needed. These are called regression estimates and
Bartlett (also, maximum likelihood) estimates of fac-
tor scores, and both are easily computed in the context
of IFA. Recalling that D? was defined as the diagonal
of the inverse of the correlation matrix, now suppose
the initial data matrix has been centered and scaled
as Z where Z’Z = R; then, using the notation given
earlier in the discussion of IFA, Bartlett estimates of
factor scores can be computed as Xy —partierr = Z D
Q,, (T, — ¢ D!/2. The discerning reader may recog-
nize that these factor scores estimates can be further
simplified using the singular value decomposition of
matrix Z D; indeed, these score estimates are just
rescaled versions of the first m principal components
of Z D. Regression estimates, in turn, are further col-
umn rescalings of the same m columns in X, _gartlett-
MLFA factor score estimates are easily computed,
but to discuss them goes beyond our scope; see [15].
Rotated or transformed versions of factor score esti-
mates are also not complicated; the reader can go to
factor score estimation (FSE) for details.

EFA in Practice: Some Guidelines and
Resources

Software packages such as CEFA [3], which imple-
ments MLFA as well as geomin among other meth-
ods, and Hyball [18], can be downloaded from the
web without cost, and they facilitate use of most of
the methods for factor extraction as well as factor
transformation. These packages are based on mod-
ern methods, they are comprehensive, and they tend
to offer advantages that most commercial software
for EFA do not. What these methods lack, to some
extent, is mechanisms to facilitate modern graphical
displays. Splus and R software, the latter of which
is also freely available from the web [r-project.org],
provide excellent modern graphical methods as well
as a number of functions to implement many of the
methods available in CEFA, and several in Hyball.
A small function for IFA is provided at the end of
this article; it works in both R and Splus. In gen-
eral, however, no one source provides all methods,
mechanisms, and management capabilities for a fully
operational EFA system — nor should this be expected
since what one specialist means by ‘fully operational’
necessarily differs from that of others.

Nearly all real-life applications of EFA require
decisions bearing on how and how many cases are

selected, how variables are to be selected and trans-
formed to help ensure approximate linearity between
variates; next, choices about factoring algorithms or
methods, the number(s) of common factors and fac-
tor transformation methods must be made. That there
be no notably weak links in this chain is important if
an EFA project is to be most informative. Virtually
all questions are contextually bound, but the literature
of EFA can provide guidance at every step.

Major references on EFA application, such as that
of Carroll [4], point up many of the possibilities and
a perspective on related issues. Carroll suggests that
special value can come from side-by-side analyses of
the same data using EFA methods and those based on
structural equation modeling (SEM). McDonald [15]
discusses EFA methods in relation to SEM. Several
authors have made connections between EFA and
other multivariate methods such as basic regression;
see [14, 17] for examples.

— —an S function for Image Factor Analysis — —

‘ifa’<-function(rr,mm) {
# routine is based on image factor
# analysis;
# it generates an unrotated common
# factor coefficients matrix & a scree
# plot; in R, follow w/ promax or
# varimax; in Splus follow w/ rotate.
# rr is taken to be symmetric matrix
# of correlations or covariances;
# mm is no. of factors. For additional
# functions or assistance, contact:
# rpruzek@uamail.albany.edu
rinv <- solve(rr) #takes inverse
# of R; so R must be nonsingular
sm2i <- diag(rinv)
smrt <- sqgrt(sm2i)
dsmrt <- diag(smrt)
rsr <- dsmrt %*% rr %*% dsmrt
reig <- eigen(rsr, sym = T)
vlamd <- reig$va
vliamdm <- vlamd[1l:mm]
gam <- as.matrix(reigS$ve[, 1l:mm])
theta <- mean(vlamd[ (mm + 1)

:nrow (ggm) 1)

dg <- sqgrt(vlamdm - theta)

if (mm == 1)
fac <- dgl[l] * diag(l/smrt)
$*% gam

else fac <- diag(l/smrt) %$*% ggm
%*% diag(dg)
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plot(l:nrow(rr),
= "gon)

abline(h = theta, 1lty = 3)
title("Scree plot for IFA")

print ("Common factor coefficients
matrix is: fac")

print (fac)

vlamd, type

list(vlamd = vlamd, theta = theta,
fac = fac)

}
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