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This document describes and illustrates a new elemental graphic for one-way analysis of 
variance, i.e., ANOVA. The primary motivation for developing the central function was to facilitate a 
deeper understanding of the key features of analysis of variance by focusing on the central question 
of the method in the context of using modern graphics that can facilitate sound data analyses. It is 
also hoped that use of this function will facilitate development of modern data-analytic thinking and 
skills in ANOVA applications. Note that the granova.1w function in R that produces this graphic is 
found in package granova. (The granova package is currently in version 2.0; however, a parallel 
package called GGgranova is currently [July 13, 2011] being finalized, one based on the ggplot2 
package by Hadley Wickham. In addition, a comprehensive article (by R.M. Pruzek and J. 
Helmreich) that documents all functions in granova has been submitted for publication; it is entitled 
Elemental	  Graphics	  for	  Analysis	  of	  Variance	  using	  the	  R	  Package	  granova.) 

 
 The key (omnibus) F statistic at the heart of any inferential application of the simplest 
ANOVA model implies a particular way to compare means, one based on data-based contrasts. 
Indeed, there appears to be one distinctive approach to comparing several groups of quantitative data 
that is wholly consistent with the central question that drives (one-way) ANOVA, and that leads 
directly to what might be called an elemental graphic for this method. The method permits 
visualization of all data points for any number of groups where all group means necessarily lie on a 
straight line for any data system. (It is also straightforward to generalize the display to accommodate 
rows and columns in any two-way ANOVA as well; see page 7 below.) Additionally, this one-way 
ANOVA graphic can be used to visualize residuals, basic ‘effects,’ as well as all data points, 
remaining faithful to the central question that drives the method. A key feature of the graphic is that it 
facilitates visualization of the central variance estimates, i.e., the Mean Squares Between and Within, 
by displaying certain squares, the sides of which are based on standard deviation units. It follows that 
the conventional F statistic can be seen as a ratio of the areas of these squares.  

 It is anticipated that students, and users generally, using this function will better understand 
the basic principles of analysis of variance, and applied researchers will be able to better understand 
their data. In addition, as discussed briefly below, the function is easily used in to study the effects of 
various changes in one’s data, or to visualize the results of simulations, or the effects of repeated 
sampling (as in bootstrapping). Also, since any data system admits to alternative transformations, or 
re-expressions, the graphic can facilitate a better understanding of how choice of transformation 
effects not just means and variances and other summary statistics, but can help qualify or support 
inferences, or see the role of individual data points in their respective groups.  

 The initial illustration of the function uses data from a One Way ANOVA website:  
http://espse.ed.psu.edu/statistics/Chapters/Chapter11/Chap11.html#A%20Statlets%20Problem 

The function granova.1w is used below for the display and analyses of these data:   

        Data    A:   26 25 29 21 20 18      each row constitutes a treatment group, n = 6 each   
                    B:   24 17 16 13 21 19         [NB:  input of these data with the function can     
                    C:   32 34 29 19 27 28         be based on input of yy, the transpose of this matrix;  
                    D:   23 29 26 20 24 25         i.e., input rows as columns of a matrix.] 
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 The data source (the website) states: “The data [were] collected by a research group investigating the 
whitening power of four new toothpaste formulas. The dependent variable ...(response) is a whiteness measure 
where the lower the number, the whiter the teeth. The independent variable Group codes the four different 
toothpaste formulas using letters” A - D.”    

 The function prints a number of standard numerical results and constructs the graphic. In its simplest 
forms, with all but one logical argument set to FALSE, the graphic shows only the essentials of ANOVA, each 
group of score values being centered on its mean. (Details about the arguments for the function are provided 
below.)  Given that Mj represents the arithmetic mean of the jth group, and M, no subscript, represents the 
grand mean the contrast coefficients are constructed, each of form cj

* = Mj – M, ordered from the smallest to 
the largest mean, say, from j = 1...J. Each coefficient of the form Mj – M is generally called an ‘effect’ in one-
way ANOVA, and the statistical (F) test for this method simply examines whether the effects cum contrasts are 
large enough in magnitude, relative to variation within groups, to conclude that their population counterparts 
are not all zero. The graphic derives especially from the Sum of Squares Between in the numerator of the 
MS(Between) of the F-statistic, which has the form SS(B) = ∑ nj (Mj – M) Mj; a little algebra shows that latter 
can be written as ∑ cj nj Mj where cj = nj cj

* = nj (Mj – M), a data-based contrast or linear combination of group 
means defined by the cj’s. The MS(W) is just the average of the respective subgroup variances if n’s are equal, 
a weighted average of group variances if the nj’s differ across groups; one can think of MS(W) as a ‘scaling’ 
factor for MS(Between) where F is computed as MS(B)/MS(W).  

To summarize the key idea of the graphic, the statistic F, which is central to one-way ANOVA, 
implies a particular way to compare (unstructured) group means, one based on a linear combination of 
group means for which the weights are data-based contrast coefficients. The denominator of F, the scaling 
factor, is just the average of the variances for the independent groups. 

 After organizing groups according to the sizes of the contrasts (from smallest to largest) and plotting 
all scores, i.e., the y(i,j) (vertically), and using a special symbol (a red triangle) to denote group means, a little 
reflection will show that the group means necessarily fall on a straight line. The two sets of numerical outputs 
provided by granova.1w are shown in Table 1, and the figure of principal interest is shown on page 2.  

Table 1  Summary statistics for an illustrative application of one-way ANOVA  
$grandsum 
    Grandmean        df.bet       df.with        MS.bet       MS.with        F.stat        F.prob    SS.bet/SS.tot  
        23.54              3.00          20.00           99.15          17.12           5.79            0.01           0.46  
$stats 
     Size    Contrast Coef     Wt'd Mean    Mean    Trim'd Mean   Var.   St. Dev. 
2      6             -5.21             18.33           18.33          18.25        15.07     3.88 
1      6             -0.38             23.17           23.17          23.00        17.37     4.17 
4      6              0.96             24.50           24.50          24.50          9.10     3.02 
3      6              4.62             28.17           28.17          29.00        26.97     5.19  
(NB: Examine numerical information first, what it alone provides, then on how the graphic presentation below 

complements & extends your understanding of these data.)  
  
 The graphic that follows illustrates how this works in the case of this particularly simple set of data,  
one with four groups, each of size six, for the toothpaste experiment. The function is called as: 
granova.1w(teeth.df,main=’ANOVA graphic for teeth whiteness data’), where teeth.df 
is a 6 x 4 matrix (a data.frame) whose columns correspond to groups (see above; i.e., the transpose of what 
is seen above). [On a Mac it can help to add args kx=1.3 & px=1.3 to the call.]  
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Figure 1   Graphic that illustrates use of function granova.1w  

 Figure 1 depicts a scatterplot of contrast coefficients (column two of $stats above) for the ordered 
groups, smallest to largest means, versus the sets of scores for the respective groups, for the horizontal and 
vertical axes respectively. Each contrast coefficient attaches to a single score, according to that score’s group 
so there are nj contrast coefficients for each group. The contrast coefficients have been jittered to help 
distinguish points (see below) and the means of groups are signified by (red) triangles within each of the score-
sets; also means themselves are printed on the right margin. The plot of the means necessarily follows a 
straight line because the means are essentially being plotted against themselves, except that the grand mean is 
initially subtracted from the first set of means. The grand mean [here, 23.54] is coupled with the contrast 
coefficient of zero, visualized as the green point at the center of the plot. 

  The overlaying squares in the center of the plot correspond to the within group estimate of variance 
(blue)  [MS(W)] & the between group (red) variance estimate [MS(B)]; each side (of  each square) 
corresponds to two standard deviation units so that their areas correspond to variances. The left side of the 
figure shows numerical values of edges for the MS(W). The ratio of the areas of the two squares, the red area 
divided by the blue, is just the F-statistic. In this case, the area of the red square is 5.79 times larger than area 
of blue square, so it is seen that F = 5.79. Study of the two squares, preferably for several examples, is likely to 
help you see, perhaps for the first time, how variances (i.e., mean squares) can be represented visually; and 
take note that when means are homogeneous enough, the red square will be smaller than the blue in which case 
the F statistic will be less than unity (one). The range of scores is given on left/vertical axis; group means, 
which correspond to the red triangles in the graphic, are printed at the right margin. Here, the four means 
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spread past two s.d.(within) units, implying ‘notable statistical effects,’ which follows (loosely) from seeing 
that the red square is substantially larger than the blue.  

 Figure 1a, below, shows the same basic graphic, but in this case a rug plot showing all residuals is 
shown at the right margin, centered on grand mean. In addition, green crosses show 20% trimmed means, these 
generally being effective robust replacements for the arithmetic means (that are clearly not robust estimates of 
location). Note that the trimmed means tend to be near their non-trimmed counterparts, except for the case of 
the third treatment, treatment C. In the latter case a low-outlier appears, which is the reason the 20% trimmed 
mean (see the green cross for the ‘G-3’, label at top) is discernibly larger than the conventional mean.   

 As for an overall summary of what these data have to say, as seen in the graphic, the second treatment, 
i.e., group B, appears to have had the ‘best’ effect (since smaller scores mean better results according to the 
authors); furthermore, treatments A & D are not particularly competitive with B, and treatment C is notably 
less effective than the others. (These statements are based on the tacit but fundamental assumption that the 
‘material’ had been randomly assigned to treatment groups so that the entities were more or less comparable 
from group to group before the introduction of treatments.) As noted, there seems to be (only) one anomalous 
data point, this the lowest score for treatment C; the green × for group C, the 20% trimmed mean, is seen not 
to be effected by the low outlier. Note that variances or standard deviations are not too dissimilar; except that 
treatment C yielded more variable scores. (We recall that formal inferential application of ANOVA entails 

               
Figure 1a: A counterpart of Figure 1 that adds residuals and trimmed means to the graphic  
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an assumption of equal variances, as well as normality in so-called treatment populations.) Finally, given that 
the F- statistic is associated with a small p-value (see $stats above), we have causal evidence (assuming 
random assignments) that these treatments have different effects (in some putative system of populations), i.e., 
the formal inferential test implies that the population means corresponding to these four samples are different 
from one another, and that the treatments were the likely causes of these differences. (Although there is 
evidence of causal effects, note that statistical results like these say nothing about what aspects of the 
treatments may have caused these effects. Generally, statisticians can provide tools to study effects of causes; 
but the causes of effects are quite another matter!)   

 The second graphic, Figure 1a, is more informative than the first in that residual scores are now shown 
in the so-called ‘rug’ plot on the right side (but where instead of centering on zero, centering is with respect to 
the grand mean), and trimmed means are shown. It seems clearer now that the lowest point in the right-most 
group (C) stands out more clearly as an outlier. While the trimmed mean for treatment C is larger than its 
untrimmed counterpart the other trimmed means are more or less the same as their untrimmed counterparts.   

 Two final points: the argument dosqrs, defaulted as T, can be set to FALSE in which case the entire 
figure becomes somewhat less busy; this also affords the option of teaching about what ANOVA shows 
without reference to inference, this being the sole purpose of the F statistic, or the overlying squares. 
Furthermore, it is recognized that comparing only two (independent) groups of scores is most often done using 
a two group t-test, in which case the red and blue squares have no special value.  

 

Suggestions for use of this graphic function to gain experience learning about 1w ANOVA 
 

 Since R makes it so easy to simulate data, it is straightforward to use this function to visualize 
simulated data (and possibly to compare various re-expressed or sampled versions of the data using this 
graphic or others). For one-way ANOVA, a simulation might proceed initially by sampling so that 
approximate sample normality is a realistic expectation. For example, suppose we wish to generate data from a 
five normal population, so that all means are 10 with a common sd of 2; and further, suppose the simulated 
data points are to be randomly assigned to five groups of varying sizes. We could accomplish this using 
>granova.1w(yy=rnorm(100,10,2),sample(1:5,100,repl=TRUE))   

To make the figure a bit more interesting, we have sampled from a t-distribution w/ df = 6 (null H true) where 
again there are five groups:     >granova.1w(yy=rt(100,6)*2+10, 
group=sample(1:5,100,repl=TRUE),re=T,tr=T,kx=1.2,px=1.2,size.line=-4,main='') 

title(‘One-way ANOVA based on simulated data [null H true], varying group sizes, 
N = 100’) 

Figure 2 below shows one particular result of such a specification. 
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Figure 2  Randomly simulated data for ANOVA with five groups of varying sizes 

  The idea here is that the standard assumption used in the mathematical derivation of the ANOVA test 
function entails the assumption of population normality, whereas applications regularly lead to samples with 
longer-than-normal tails, so there may be good reasons in some contexts to study effects of various longer-
than-normal tailed distributions on results when ANOVA is used. If samples are to be held to the same 
size, the second argument for gp could be constructed as rep(1:#gps,ea=n), in obvious notation. A 
further variation on this theme might entail use of ranks in place of the initial scores in the yy vector; 
for example, we define yy = rank(rt(100,3)) for the first of the two arguments in the basic 
function; this would provide what is known in the basic literature of statistics as the Friedman version 
of non-parametric one-way ANOVA. Visual comparisons of rank-transformed data with its unranked 
counterpart can be quite revealing.   
  
  Another method of interest entails bootstrapping. The function samp.mat.boot, given below 
(with only two lines of code) is easily employed when the input data yy take the form of a matrix 
(and gp is left unspecified). Data (e.g. teeth.df above) would be in the form of a matrix as in:  
granova.1w(yy=samp.mat.boot(yy=teeth.df)) so that ‘new’ data to be analyzed and plotted 
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generally consists of bootstrap samples from respective columns (treatment groups) of the input 
matrix. How many groups to compare, of what sizes, possibly equal or varying, and what 
distributional specifications to make are among the choices that one must make, but applications 
based on S- language software are straightforward to make, as well as easily tailored to particular 
needs in defined applications in the context of R. In applied statistical practice, as distinguished from 
simulation studies, there is the possibility that covariate information will be available for individual 
entities. In such cases, it may be useful or revealing to employ a variety of colors, shapes, sizes, etc. 
to characterize individual scores, here seen as small black dots. One further option (not shown) 
provided by granova.1w is that of identifying individual data points, which can be accomplished 
with mouse clicks if argument ident=T. Once one decides to visualize data points, any information 
thought likely to be informative in the context of the application is of potential interest in such 
graphics. In observational studies, as contrasted with experiments, covariate information may be 
usefully summarized using propensity scores that in turn can be used in constructing graphics of this 
form.  
  
 There is special merit in the teachings of estimable statistician John Tukey, who argued 
compellingly that data are the proper focus of applied science, not statistics, not statistical theory, and 
not necessarily formal inference. This generally implies that investigators should aim to take account 
of all that is known about the data’s source and context. Graphics in particular have potential to 
suggest new hypotheses, to help ensure sound qualifications, and sometimes to show there may be 
good reasons to modify or revise initial research questions, depending what one’s data have to say 
and on the background information that may be available. The elemental ANOVA graphic seen here 
has the virtue that it connects directly with the central question that drives one-way ANOVA while 
providing all the data points (possibly with identifying information) as well as the standard summary 
statistics for this method. Moreover, when generalized to the case of two-way ANOVA 
(granova.2w), and related functions, a variety of other advantages can be seen in sharper relief. 
(Write to me at rmpruzek@yahoo.com to get illustrations of graphics provided by granova.2w, as 
well as other functions in the granova package. Or better yet, download the package, and use the 
examples in the function documentations to generate your own graphics. Or try these functions with 
your own data.) 
  
                 *  *  *  *  *  *  *  * *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * 

 
AN AUXILLARY FUNCTION TO FACILITATE BOOTSTRAPPING; where input x is intended to 
be matrix yy in granova.1w (where equal-sized groups are stipulated).  
samp.mat.boot <- function(x){ y <-x  
for(i in 1:ncol(y)) y[,i]<-sample(x[,i],nrow(x),repl=T)  
list(y=y) }  


