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Abstract
We illustrate the general concept of what we describe as elemental graphics: displays that afford
direct visualizations of data with respect to fundamental questions that drive particular statisti-
cal methods. Attention is directed to methods that have both descriptive and inferential features
through a focus on what can be seen as elemental graphics for analysis of variance. Our graphics
are partly pedagogical in nature, highlighting the fundamental comparisons and outcomes made
in the conduct of an ANOVA; however, their use readily extends well beyond pedagogy. These
graphics can be helpful in the analysis of nearly any data set for which the corresponding method
is applicable. The graphics were created using our graphical ANOVA R package granova.1

1 Introduction

Effective data analysis generally requires a choice among several statistical methods or models.
Particular research questions are often central to the choice of methods. Typically, these statistical
methods entail explicit questions that can be approached either descriptively or inferentially. One
major class of techniques or methods that is especially widely taught and used is known as Analysis
of Variance (ANOVA), a class on which we focus. We provide examples (including code, and
related details) and discussion of what we describe as elemental graphics for several varieties
of ANOVA, graphics that have descriptive as well as inferential value to facilitate informative
applications. The adjective ‘elemental’ was chosen to signify “basic” graphics for these distinctive
methods, graphics that can be shown to have direct connections to the central questions that are
fundamental to applications of these methods. These graphics can be useful not only for those
students seeing these techniques for the first time, but for the more advanced analyst as well.

An elemental graphic facilitates comprehensive visualization of data in a way that illuminates the
questions that a particular statistical method seeks to answer. For example, a simple scatterplot
may be considered the canonical example of an elemental graphic for basic (least squares) linear
regression if it incorporates superposition of the linear regression line. If further augmented with
vertical lines (from the points to the regression line) that show ‘errors’, such a scatterplot can

1This paper grew out of notes prepared for a talk given by R. Pruzek at the 2008 meeting of the Society of Multi-
variate Experimental Psychology in Montreal, Ontario, Canada.



become more informative and elemental with respect to minimizing (sums of squared) errors in
linear prediction.

A key feature of elemental graphics is that beyond their obvious value in displaying data their use
generally provides details showing how data points and related summaries play out in the context of
specific questions that drive particular analytic methods. Frequently, either virtues and limitations
of particular methods will be highlighted in some way by elemental graphics. When methods are
closely related (e.g., those based on ranking, and their parametric counterparts) it can, as we shall
demonstrate, be especially helpful to investigate details about how such methods work when used
to analyze the “same” data expressed in different ways.

In Section 2 below we present two non-elemental approaches to comparing groups with our ele-
mental graphic for one-way ANOVA. Compared with conventional non-elemental graphics, those
that generally do not have any direct correspondence with particular (descriptive and inferential)
questions that drive statistical methods, elemental graphics can facilitate more useful or informa-
tive evaluations of methods or data in relation to one another. This is chiefly because elemental
graphics provide more incisive information about how particular data points play out in statistical
analyses. There appear to us to be relatively few extant statistical graphics that are reasonably de-
scribed as elemental, so there may be numerous opportunities for further development of elemental
graphics. We have found it interesting to query whether elemental graphics exist or have been de-
veloped for particular methods. But we recognize that especially for relatively complex statistical
methods, or for high dimensional data, it may be difficult – at least with existing software – to
construct elemental graphics.

For any particular statistical analysis of data, an elemental graphic will not be unique. A set of
elemental graphics for a particular combination of method and data are likely to differ at least
in details. For example, elemental graphics can differ in how they represent data with respect to
questions central to a method, and also particular features of given data. Furthermore, the tools
or software itself available to implement particular graphics will generally play a role in graphic
construction. Tastes or values of the graphic-analyst and accounting for the intended audience can
also influence displays; e.g., different colors, symbols and/or line-types may be used, or details
may be added or suppressed. In addition any 2D graphic can be arbitrarily rotated on a page. More
generally, there are many ways to use ink on a page or on a screen.

Differences in details can make discernible differences in appearance and effectiveness, perhaps
for specific audiences, or for data sets of various sizes and complexities. In addition, graphics can
be static or interactive. A given static graphic depicting the criterion for the choice of regression
line might be different from one implemented using an interactive applet. For a wide variety of
graphics, some of which may be described as elemental with respect to particular statistical models,
see for instance Graph Gallery; note especially the examples showing association plots and various
lattice plots (and note that all examples include the relevant R source code).

In general, even though graphics may differ in details, elemental graphics can deepen one’s under-
standing of both data and methods, since the same basic method can be passed over a variety of
data sets, and different methods can be passed over the same data. Variations on this theme can
be particularly helpful for students. Put another way, elemental graphics, when they are feasible,
provide a means for users to see an analysis, such as a one- or two-way ANOVA, using data about
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which they may have notable experience or interest. A notable example of this is shown in Sec-
tion 4.2 below where use of an elemental graphic makes it possible to see what is meant by Tukey’s
model for “one-degree-of-freedom-for-nonadditivity” in the context of two-way ANOVA.

It is interesting to note that despite being on the scene for more than three quarters of a century,
ANOVA continues to be central to many applied statistical sciences, and some modern statisticians
continue to advocate for use of ANOVA methodology (Gelman 2005). Furthermore, ANOVA
methods continue to be standard topics in most current-day statistics books and are ubiquitous
in published articles throughout the applied sciences. Our intention to help enable instructors to
constructively address comments such as these, made by a student who reviewed a draft of this
article:

“You mention that there is an obvious or inherent value to graphics in that they display
data - I think this is something that actually may not be valued as highly as you might
expect! I cannot tell you how often in both school and professionally I have had dis-
cussions with people about how important it is to know your data, and that exploring
them to gain an understanding of their elements and their operation in an analysis is a
critical step that many people skip in order to get to the numeric output. For example,
I [recently] took a course for which ANOVA was the principal method under study;
even though we were using [artificial] data, graphical exploration of the data was an
afterthought, a button you clicked because it was an output option when running the
analysis. There was no conceptual understanding of the dimensionality and proper-
ties of the data and how they related to either the analysis method or to the research
question." (Fisk 2011).

In this paper we examine four classes of ANOVA methods. We provide examples of elemental
graphics for each of the following methods or models: one and two-way ANOVA; contrast-based
analyses of group differences; and dependent (or paired) sample comparisons. These particular
methods correspond to four functions in granova (for graphical ANOVA), a package in R (Pruzek
and Helmreich 2010; R Development Core Team 2008). Indeed, this article can be seen as ex-
tended documentation of the granova package. We also describe how to acquire R, which is freely
available to anyone with access to the internet. Furthermore, as for all functions, granova is freely
available for download and is documented in R itself.

2 Graphic for a Four Group Example: Singer Heights

As noted above, ANOVA can be used for description of data as well as for inference. In the case
of description attention is usually focused on partitioning variance or showing how applications of
ANOVA models decompose data into what can be called ‘fitted’ and ‘error’ parts (Hoaglin et al.
1991)). ANOVA descriptions and summaries are usually numerical in form, not graphical. In this
section we focus on description using graphics, where all data points are shown together with the
usual summary statistics.

We begin by showing two standard methods, boxplots and jittered stripcharts (Figures 1 and 2), for
comparing several independent groups; nothing at the outset is new as these conventional methods
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Figure 1: Boxplots of Heights of Singers by
Voice, from the R library lattice (Sarkar
2011).
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Figure 2: Strip Charts of Heights of Singers
by Voice.

are not ‘elemental’ graphics. However, we configure the stripcharts in a specific way that begins to
depict the elemental aspects of ANOVA we wish to highlight. Then we present the basic elemental
version that builds on these stripcharts.

To replicate our analyses in this section and throughout, the reader is encouraged to download the
software platform R, available from the Comprehensive R Archive Network (CRAN) on the web
(http://cran.r-project.org/). At the R console, install and load the package (library of functions)
granova. This may be accomplished in several ways, for example:

R> install.packages( ‘granova’, dep = TRUE)
R> library(granova)

(Note that we use the convention of including the letter R before the prompt sign >, although this
does not ordinarily appear on the actual R console.) Datasets used in this article may be downloaded
and installed into R from the website for this journal as .csv files. We have included detailed R
commands for doing this, as well as the commands used to generate all graphics in the paper, in
the Appendix 8. The granova functions provide numerical summary statistics as well (viz., the
standard ANOVA table) which is also shown in the Appendix.

Figure 1 depicts our first dataset, singer, which originates in the R library lattice (Sarkar 2011).
It shows the heights in inches for members of a choral society, as distinguished by voice parts. (We
have consolidated the original eight parts to create four: soprano, alto, tenor and bass.) As can
be seen from Figures 1 and 2, these four groups differ systematically with respect to heights; the
boxplots in Figure 1 summarize height information, using a summary graphic commonly employed
to compare independent groups. Because boxplots rely chiefly on only five number summaries, the
boxplots suppress most details about the data. When boxplots are replaced with stripcharts, more
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One-way ANOVA displaying 4 groups
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Figure 3: Heights of Singers

detailed information becomes available for each group. Figure 2 provides a stripchart graphic that
shows all individual heights (after jittering, adding small random ‘errors’ to the X axis locations
for individual observations to help distinguish points); the (red) triangles in the columns denote
group means, these being of direct relevance to ANOVA. Note further, that we have separated the
two female from the two male groups of singers by adding space (horizontally) so that the locus of
group means is linear. (The value of this idea will be made explicit below.)

In Figure 3 we provide our first elemental graphic, as produced using the granova.1w function
(see Appendix A 8). Note that Figure 3 bears a resemblance to what is seen in Figure 2. The
key idea is to organize the presentation of groups so that the means are ordered (from smallest to
largest, left to right), and then to plot all (jittered) data values and summarize them for each group,
as well as for the dataset as a whole. The first step in creating the elemental graphic for one-way
ANOVA is to define a variable consisting of the differences between individual group means and
the grand mean, repeating each value (a difference score) as many times as there are scores in each
group, thus creating a contrast vector of length N (the number of scores in all groups combined).
When a scatterplot is constructed using the pairs X, Y where X is the contrast vector and Y is
the vector of heights, for all groups, ordered to correspond with the contrast vector coefficients
(treatment deviation contrasts), the graphic of Figure 3 results. Other features of the granova.1w
graphic entail printing group means on the right margin and then contrast coefficients (unique to the
groups) obtained by subtracting 67.3, the grand mean (printed on the left margin) from the group
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means to get the values -3.18, -1.91, 2.11 and 3.69 on the baseline. Group sizes are printed along
the top for each group, as are the group names (Soprano, ..., Bass). The scatterplot itself shows the
score values, but to make them distinct (when, as is common there are repeated values) they have
been horizontally jittered. Other features of this plot, and extensions, are described below.

The elemental graphic in Figure 3 has been developed by focusing on the central question that
one-way ANOVA aims to answer: are there discernible statistical differences among the means of
several independent groups. Details are spelled out in the next section. But before leaving Figure 2,
stop to note that granova.1w accommodates any number of groups of possibly varying sizes, and
that both numerical and graphical information is provided in the graphic. Numerical summary
results (see the Appendix 8) are also provided as a side result of using the function. Tukey (1972)
used the term semi-graphic display to describe such a graphic, since it provides graphical as well as
numerical information. The graphic compares the means of each of the groups visually (not simply
numerically) to each other, and in relation to the grand mean. Since data values for all groups are
displayed, any patterns, clusters, outliers, not to mention the variances, can be seen for the entire
dataset. For this example, the main idea is to describe the data for all groups, which is to say that
statistical inference holds little interest in this case; i.e., it is well-known that (population) mean
heights differ systematically with respect to these voice-parts. In the next section, the principles
underpinning the graphic concentrate on inference, while still providing graphical information that
can add further insights.

3 A Graphic for One-way ANOVA

The (omnibus) F statistic at the heart of any inferential application of one-way ANOVA implies
a particular way to compare means, one relying on data-based contrasts. The graphic we have
developed is based on this particular comparison of means. Note that the main goal in this section
is to introduce notation and other details that makes explicit how the logic of one-way ANOVA led
to this particular (elemental) graphic.

Another example is shown in Figure 4, where again the elemental graphic was generated using
the function granova.1w. These data were first published in Box, Hunter and Hunter (1978), but
several columns have been added, so the new version of the dataset is included in the granova
package.

As noted above, the baseline (horizontal axis) is labeled in terms of contrast coefficients c j for
the J groups, ordered from smallest to largest, each of which is a group mean minus the grand
mean: c j = M j −M, j = 1 . . .J. Scores yi j and group means M j for the groups are printed on the
vertical axis. In this case, J = 12 and all group sizes are the same, n = 4. Symbols representing
the group means (red triangles) necessarily fall on a straight line since contrast coefficients and
group means differ only by a constant. Score values yi j for each group are plotted with slight
horizontal jittering in vertical columns aligned with the contrast coefficients. (For the functions
granova.1w, granova.2w and granova.contr the amount of jittering can be controlled by the
user.) Numerical values for the individual group means M j are shown on the right side of the
graphic, as are the full set of residuals (the aggregation of yi j −M j differences), using a rug plot –
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so named because score values appear as ‘tufts’ of a shag carpet. The grand mean M and (nominal)
range of all scores are shown on the left side; group sizes n j are provided along the top of the plot,
as are group identification symbols.

We now build upon the basic graphic presented in Figure 3. The mean square error within groups
(MSW) and the mean square error between groups (MSB) are now visualized in terms of areas
of squares. Both squares are centered on the grand mean (large green dot). The blue square
corresponds to the MSW. Its side is based on the standard deviation of residuals (pooled within
group mean deviations), shown in a rug plot at the right margin. Given the statistic MSB (= SSB/df-
between), where SSB = ∑n j(M j −M)2 = ∑c jn jM j, SSB can be viewed as a linear combination
of the group means (weighted by their sample sizes) where the coefficients are the c j’s. By taking
its square root, the MSB determines the length of the side of the red square.2

In other words, this graphic depicts individual observations plotted in columns whose positions are
determined by the c j; this affords a way to compare both within and between group variation for
all groups. Standard summary statistics are represented as the areas of the blue and red squares.
Finally the F-statistic can be seen as the ratio of the area of the red to the blue square. In this case
MSB > MSW, so F > 1. The F-statistic is printed as a legend at the lower right. (If variation
between groups is sufficiently large in relation to within group variance, the red square may be too
large to appear in the plot.) The graphic presents in a visual context the specific elements (means,
variances) on which an ANOVA is based.

To connect this elemental graphic with graphics that have become conventional in ANOVA ap-
plications, note the following: When data are decomposed into score = fitted + error parts for a
one-way ANOVA the fitted values are just the observed group means (the red triangles), and the
errors are the deviations within groups of the scores from their group means. Since the elemental
graphic automatically orders fitted values from small to large (left to right), the graphic provides
the same information as a conventional scatterplot of fitted versus residual values. Furthermore,
the rug plot for the residuals shows the marginal distribution of residuals taken across all groups.
(Fitted vs. residual plots can be especially helpful to learn whether a non-linear transformation of
the response variable may be warranted, e.g., learning that variances for groups tend to increase as
fitted values (group means) get larger can suggest that a square root or log transformation of the
response is in order. Moreover, if outliers are seen in the residual (rug) plot they are readily traced
back to the groups from which they came.)

As noted above, the function granova.1w can accommodate any number of groups which may be
of varying sizes. (The analyst can inspect the code to see the details for how this is done.) This can
present problems, however, especially when the means, and consequently some c j, are identical
or nearly so. In fact, this happens for groups 10 and 11 shown in Figure 4. When it is difficult
to distinguish corresponding groups cum columns one may wish to modify input data slightly by
adding or subtracting a small value from all scores in designated groups; this can improve the
graphic and generally results in only trivial changes in summary statistics.

2For technical reasons, both squares have sides based on twice these standard deviations, so the areas of each
square are four times the corresponding MS’s; of course the multiplier has no effect on the ratio of these areas.
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One-way ANOVA displaying 12 groups
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Figure 4: Inverse survival times for 12 treatments for the poison data found in Box, Hunter and
Hunter (1978). Note that variances across groups are similar for this metric.

3.1 Details for a Specific Example: Poison Data for 12 Unstructured Groups

The data shown in Figure 4 were presented initially in Box and Cox (1964), then discussed in
detail by Box, Hunter and Hunter (1978), hereafter called BHH. The scores are survival times in
units of 10 hours; the data are discussed by BHH using both a one-way and two-way ANOVAs.
(These data are reexamined again in the next section.) The data were collected for three poisons,
each subject to four treatments, in a balanced full-factorial design, with 4 replications for each
cell. Central to an understanding of these data is that survival times themselves are far less sat-
isfactory for ANOVA applications than the reciprocal of these times because as BHH make clear
the assumption of constant population variances that underpins use of the F-statistic (21.53) is far
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more reasonable after this non-linear transformation.3 Finally, numeric output from the function
provides the standard one-way ANOVA table, a table with group statistics ordered according to the
contrast coefficients in the graphic, weighted and 20% trimmed means, and finally, variances and
standard deviations. As noted above in Section 2, granova.1w provides these and other summary
statistics. We reproduce some of them and the specific R command for Figure 4 as well as all
graphics in the Appendix 8.

If survival times (or reciprocals) are converted to ranks, a rank-based version of one-way ANOVA,
commonly described as non-parametric ANOVA is easy to generate. Figure 5 shows such an
analysis using the transformed version of ranks given in our poison data set. In this case scores
have been converted to ranks, and also rescaled to have the same median as the original data (i.e.,
1/SurvTimes), and a spread comparable to that of the original data. (Because this constitutes a
linear transformation of the ranks it has no effect on the rank-based test statistic, but by making the
metrics compatible, helps in the graphic to show similarities between the preceding analysis and
the one based on ranks.) The standard Kruskal-Wallis test is based on ranks; it asks whether the
mean ranks differ statistically across groups and it entails computing a χ2 statistic. For these data,
χ2 = 40.2, with a p-value of 3.32 ∗ 10−5. The graphic includes the F-statistic, but interestingly
its p-value is nearly the same as that of the χ2 statistic. Compared to the usual non-parametric
analysis of this form, the graphic shows more. Note that the ordering of the group means based
on ranks conforms exactly to the order based on reciprocals of survival times. This is because
the highest scores have the lowest ranks, and vice versa – and since the ranks have been linearly
rescaled, the ordering holds. In this example the graphic shows no discernible outliers for the rank
data, something that is rarely mentioned in non-parametric analyses. (Note that it is possible for
outliers to appear in ranked data (within groups) even though most authors who discuss rank-based
ANOVA do not make this point.)

In the following section we use the same data as given in BHH for our illustration of two-way
ANOVA. While basic graphic information will be presented, the reader is advised to consider use
of the R software directly to generate the graphics because the key graphic is dynamic: it consists
of a three-dimensional data display the position of which is controlled by the mouse.

4 A Graphic for Two-Way ANOVA

Moving to two-way ANOVA requires a reconceptualization, one that is informed by consideration
of contrasts as shown in Figure 4. In particular, account must be taken of structure imposed on the
groups. The two-way display is best seen with reference to a row by column table where means
M jk appear in cells, and row and column means are made available, say, on the right and lower
margins respectively. Ideally, as in the case of our first example, the design will be balanced; in any
case the set of means for rows and columns can generally be used to generate contrast coefficients
(usually called row and column ‘effects’). The standard way to generate contrast coefficients cum
effects is to compute them by subtracting the grand mean from the row and column marginal means

3The reader is encouraged to reanalyze these data which may be found in package granova, as the dataset poison;
advantages of using this version of the data include the fact that two alternative transformations of the initial survival
times, as well as contrast coefficients (see below) are provided.
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One-way ANOVA displaying 12 groups
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Figure 5: Inverse Survival Time Ranks for 12 treatments from Box, Hunter and Hunter (1978).
Note again that variances across groups are similar for this metric.

respectively. For rows, c j. = M j.−M; for columns, c.k = M.k −M. The granova.2w function can
(in principle) accommodate any number of rows or columns.

The two-way ANOVA analog of the straight line that shows the locus of means for one-way
ANOVA is a flat surface, where grid-lines can be used to show how the c j. and c.k identify the
ordered (and properly spaced) rows and columns. In general, as in the one-way graphic, row and
column effects are ordered and a flat surface always follows from fitting additively. The degree of
‘tilt’ of the surface (most evident in the initial display) corresponds generally to the magnitude of
the corresponding effect. Initially, before one begins to rotate the graphic, factor labels are shown
on the lower axes; response values are shown on vertical axis. When used interactively, rotation
generally affords clear visualization of the data in all cells, whatever their sizes. Such dynamic
graphics connect directly to basic questions that underpin two-way ANOVA, as they facilitate vi-
sualization of effects.
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When cell sizes vary, and especially when the two-way design is not balanced, effects generally
take the cell sizes into account. In the case of unbalanced data, however, students of ANOVA
methodology hold differing opinions about how analyses should proceed. That is, different analysts
routinely advocate different models to analyze unbalanced data for two-way layouts. For this
reason, numerical results produced by granova.2w may not satisfy some data analysts, at least
in some contexts. It follows that the likelihood that the granova.2w graphic will be judged as
‘satisfactory’ by different analysts may depend on how close the row by column dataset is to being
balanced.

4.1 Details for the Two-Way ANOVA Example: A 3× 4 Structure with 4
replications per Group

Figure 6(a) exhibits a snapshot for inverse survival time data for a two-way ANOVA correspond-
ing to the preferred analysis, as discussed in BHH. Each of the twelve within-cell distributions is
depicted as a set of (blue) spheres, (initially) vertically stacked for individual row-column combi-
nations. The mean for each row-column combination corresponds to a white sphere. (Note that
if the mean for any group is close to one of the data points, then the mean depicted by the white
sphere may be masked or obscured.)

The flat surface seen in Figure 6(a) corresponds to the “fitted means” for an additive model analysis.
Tacitly, use of an additive model implies that cell means lie sufficiently close to the flat surface,
which means no evidence of interaction between the rows and columns. Indeed, the test statistic
for interaction in this example is not statistically different from zero. Each interaction term (for any
cell of such a two-way table) can be written as M jk −M j.−M.k +M. When the deviations, shown
by the difference between the cell means and the corresponding fitted values (the algebraic sum of
the trailing three terms in this expression) tend to be large, this is generally taken as evidence of
interaction between the row and column effects. This effect will show up as deviations, possibly
systematic, of the white spheres from the flat surface when an additive model has been fit.

Figure 6(b) shows a graphic (snapshot) where the response is the untransformed survival times
with a quadratic fit superimposed; the curvature is strongly evident (compare to Figure 6(a)). That
is, Figure 6(b) shows the data in its original metric (SurvTime) and provides a surface based on a
quadratic model fit. The comparison of these two elemental graphics for the transformed and the
original response points up how much difference a non-linear transformation can make; particu-
larly, how much simplification can be lent to the analysis by such a transformation that homog-
enizes group variances. When interactive effects are highly complicated the analyst may need to
study the two-way graphic carefully from several perspectives to be able to describe the interac-
tion(s).
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(a) Additive fitted model to survival rates (inverse survival
times).

(b) Quadratic fitted model to untransformed survival times.

Figure 6: Screen capture of three dimensional plots with fitted models of the poison survival rates
and times from Box, Hunter and Hunter (1978). Note how the quadratic model differs from the
additive version; graphics are interactively zoomable and orientable using a mouse.
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4.2 Details for a Second Two-Way ANOVA Example: A 3×5 Structure with
No Replications

Another example is shown here, using data from Hoaglin, Mosteller and Tukey (1991), hereafter
refered to as HMT. In this case the purpose was to describe the relationships among five income
groups, for three age groups and the percent of the population who smoke. There is only one re-
sponse for each Income/Age combination: the percent in the population who smoke. (The original
source of the data is the Health Interview Survey conducted by the National Center for Health
Statistics between 1978 and 1980, as excerpted by HMT in chapter 6.) Note that lacking replica-
tions within cells means that standard methods to test hypotheses about interaction do not work.
However, the graphic provides information that suggests interaction in this case; see Figure 6. As
in the case of the poison data, HMT, like BHH, examine and discuss these data more thoroughly
than space permitted here.

Figure 7 shows a quadratic fit to percentages who smoke for the HMT data (with no replica-
tions within cells); note that this curved surface fits the data about as well as a simple model can.
Indeed, the quadratic fit is equivalent to using Tukey’s one-degree-of-freedom-for-non-additivity
(ODFNA), as in the case of the survival time analysis (see Figure 6(b)). This shows that in cases
like this the graphic does more than permit the analyst to “see” the data, it carries a visual mes-
sage of what it means to fit Tukey’s ODFNA model in a two-way ANOVA as well as to learn
whether the ODFNA model is satisfactory. For percent data, non-linear transformations can, as
seen in the analysis of the poisons data, help to simplify analyses; for more details see Chapter 13
of HMT.

Finally, we note that numerical results provided in this run of the granova.2w graphic are wholly
straightforward, and conform with those given by BHH. However, as noted above, for unbal-
anced data, or datasets where there are no observations in some cells, numerical results given by
granova.2w may be inappropriate (at least by some standards). Our experience suggests that when
some cells are empty, it may be helpful to impute data for those cells and proceed, taking care to
see how the pseudo-values play out in the graphic as well as in the numerical analysis. Of course
strategies like this can be used for unbalanced data generally. Naturally, imputation can be done
in a variety of ways, so the analyst may want to compare graphics across different imputations.
There is a large literature on the analysis of unbalanced designs and imputation; for an especially
informative discussion of this issue, see Venables (2000).

5 A Graphic for Comparing Groups Using Contrasts

Contrasts, or contrast vectors, show comparisons between groups, or linear functions of group
means; individual coefficients, negative versus positive, show exactly which groups are “contrasted
with” others. Our elemental graphic for this case has been developed for depicting how groups of
scores, not just group means, compare across the (non-zero) contrast coefficients with respect to
responses. The set of comparisons, one for each contrast vector, can be seen as constituting an
elemental graphic for the set of contrast vectors that the user has supplied. This function can
facilitate analyses of higher order fixed effects designs especially those with relatively few levels
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Figure 7: Screen capture of the smokers dataset with quadratic model fit.

for each factor; it can work for crossed or factorial designs as well as those that entail nesting, or
mixtures thereof.

The function granova.contr accommodates up to J − 1 contrasts for J groups (or “cells”). If
fewer than J −1 contrasts are specified, then the number per group must be provided in the initial
call. For the current version of this function group sizes must be equal. Contrast vectors need
not be mutually orthogonal, however a number of virtues derive from mutual orthogonality. The
elemental graphic(s) generates as many panels as there are specified contrasts, with data values
jittered so as to reduce overlapping of points. (The R functions contr.poly and contr.helmert
provide simple ways to generate contrast vectors for use in granova.contr; but the point should
be emphasized that contrasts-based analyses can take on a wide variety of forms to accommodate
factorial, nested, and special purpose analyses. Several books have been written to spell out why
and how contrast-based analyses can be effective; see HMT (p. 182).)

In addition to the jittered points, each panel exhibits a straight line that connects response means
for that contrast as linearly combined for the negative (left) and positive (right) coefficients in the
corresponding contrast vector. Evidence of non-zero effects correspond to slopes of these lines
that depart notably from horizontal (slope = 0). Standardization of contrast vectors ensures that
negative coefficient means (generally linear combinations) are always compared with positive co-
efficient means; this provides the generality to accommodate virtually any pre-specified contrasts,
and gives a framework for comparing standardized effect sizes over contrasts. A set of prescribed
contrasts defines any analysis. In general outliers and/or skewed distributions are readily displayed
in some or all of the panels.

In addition to the displays for individual contrasts, a numerical summary is provided with the
graphic showing the pattern of means across groups (in the order given). Numerical results can
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help inform the user about ‘significance’ in the case of each panel using a regression approach
to the analysis, where the usual normal theory assumptions are (tacitly) invoked. Each contrast
vector is a predictor, and the set of these independent variables are used to predict the response.
The usual lines of the standard ANOVA or linear model summary table for contrast-based designs
are isomorphic with the panel displays.

5.1 Details for a Contrasts-based Analysis of Physiological Arousal Data:
A 2×2 Structure with Replications.

Figure 8(a) depicts an analysis based on three contrasts for a 2× 2 design, where the contrast
vectors show how groups are compared in what has become a standard analysis. These kinds of
contrasts readily generalize to virtually any 2k factorial or 2k−m fractional factorial design, and are
easily implemented in R. Lowry (2010) provides these data, which pertain to arousal levels in rats,
and he carries out all standard computations to help link our results with those that are generally
reported for this ANOVA.

The first panel contrasts the two levels of Drug A; the second shows the effect of two levels of Drug
B on arousal; these correspond to so-called main effects. The blue dashed lines that compare means
suggest that both main effects are non-zero for both drugs. The numerical analysis reinforces this
interpretation as it yields t-statistics with magnitudes above 3 for both main effects; for each, the
standardized effect size exceeds unity (in magnitude). The third panel corresponds to a contrast
defined as the product of the first two (DrugA.B) and this suggests no interaction; indeed the t-
statistic is near zero as is the standardized effect size. Finally, the fourth panel does not concern
contrasts, but instead exhibits scores and means of all (four) treatment groups. The last panel
might be compared to an output from a one-way treatment using granova.1w, although we do not
conduct that analysis.

5.2 Details for Contrasts for the Poison Data: Data Based Contrasts

The poisons data set, using inverse survival time responses, has been used for the illustrations in
Figure 8(b). The goal of this illustration is to show how a contrasts-based graphic can effectively
be generated following a two-way ANOVA, at least for a balanced design. Note the caveats below,
however, as related to the numerical summary. Construction of the specific contrasts was based on
information provided in the output of the initial two-way ANOVA shown in Section 4. In particular,
given the ordering of the means for the row and column factors, and using just a simple “linear”
contrast for the row and column groups, these first two data-based contrast vectors show that nearly
all variance of the means for this 4×3 design can be summarized or accounted for using only two
contrasts based on mean ordering, one for each factor.

A third contrast is also shown in the south-west or (2,1) panel of Figure 8(b), computed using
element-wise products of the first two contrast vectors (see the contrast matrix in Appendix 8.10).
The interaction effect for the reciprocal survival time (i.e. survival rate) metric is notably smaller
than that for the row and column contrasts. We have found that graphics like this based on contrasts
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Figure 8: Graphical (panel) results for apriori contrasts (a) and post-hoc contrasts (b) based on
granova.contr
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often show no discernible effects with respect to mean differences, but they may, as in the case
of this third contrast, show that groups associated with contrasts may have point-sets that differ
markedly from one another in ways we might not have become aware of sans graphics.

An important caveat is that had the experimenter prespecified these two linear contrasts, for rows
and columns respectively, then the analysis would constitute a planned-comparison among groups,
and the numerical (test statistic) results, and corresponding probabilities, would (ostensibly) have
been meaningful. As it is, given that the initial data analysis results were used to construct the
contrast coefficients, the display shown in Figure 8(b) is nevertheless useful for summarization
of variation among group means. The qualification holds that probabilistic results (printed in
Appendix A 8) for such a run are not meaningful since these contrasts were not planned.

6 Dependent Sample Assessment Plots

Next, we introduce an elemental graphic for analysis of two dependent samples. We call this a
Dependent Sample Assessment Plot, where an example is shown in Figure 9.4. As discussed in
Pruzek and Helmreich (2009), there are at least four distinctive ways to acquire dependent sample
data, two of which entail repeated measures for units or individuals, and two of which entail either
blocking or matching to define pairs. In all cases, X and Y scores are used to generate difference
scores D that are the usual focus of an analysis. The graphic we present shows all scores, X , Y ,
and D, and how they relate to one another. Note that the central question that usually drives a
dependent sample analysis concerns the average difference score, and especially how much that
differs from zero. Typically, the use of graphics in the dependent sample case, if used at all, is to
check parametric assumptions about difference scores; we shall demonstrate some advantages of
adding graphical results for such data.

6.1 Details for a Repeated Measures Problem: Examining Effects of a
Placebo Using Difference Scores

The graphic shown in Figure 9 focuses on a scatterplot of two dependent samples (paired (X ,Y )
values), here for a sample of size n = 12. Each pair of scores corresponds to before and after
behavior ratings of the same person diagnosed as a chronic schizophrenic. In this case, Y values
show ratings before taking a ‘placebo’ as if it were a drug, X values depict ratings six weeks after
treatment. Data are from Stanley and Walton (1961) and this example is discussed by Lehmann
(1975). For each (X ,Y ) point, one can see three projections: one to the ‘north’ forming a rug plot
showing the X score distribution, another to the ‘east’ showing the distribution via rug tufts for Y
scores; and finally to the ‘southwest’ where projections are shown by thin dotted lines to crosses
on a line segment at the lower-left. The (narrow, red) dashed vertical and horizontal lines (that
intersect with the heavier diagonal (dashed red) line) correspond to the means for the X and Y
(marginal) distributions respectively. The 12 crosses depict a (version of a) stripchart of the D’s,

4A more detailed examination of the dependent sample paradigm, especially via the elemental graphic presented
here, is presented in Pruzek and Helmreich (2009)
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Figure 9: Dependent sample assessment plot using schizophrenic behavior ratings from Stanley
and Walton (1961)

where each D = X −Y , i.e., the distribution of difference scores. The mean of the distribution
of difference scores (crosses) corresponds to the heavy dashed (red) line that is parallel to the
identity line (showing X = Y ); the green line segment below the difference score crosses shows a
standard 95% confidence interval, which in this case is rather short and does not span zero. We
have included (optional) reference labels for each individual to assist the discussion.

While a standard analysis focuses on the difference scores and either a t-statistic or a confidence
interval, considerably more information is readily seen in the graphic. We distinguish two groups
of subjects in Figure 9: A = (8, 11, 12, 1, 5, 6) and B = (2, 3, 4, 7, 9, 10). The six subjects in
group A showed almost no change after treatment (all points fall near or on the Y = X line). The
B group differs from A, since it is for these individuals that the strongest placebo effects appear.
In fact, the summary significance shown by the t-statistic of 3.21 rests almost entirely on effects
for group B, since the effects for individuals in group A are near zero. Although such a post-hoc
interpretation risks over-interpretation of data, it seems likely that the investigator who is concerned
about placebo effects would want to know more about how subjects in group B might differ from
those in A since the B persons seemed more susceptible to placebo effects. Such questions are
representative of the kind of post-hoc queries that might be of interest to the applied researcher,
and they are far more readily brought to light when using this type of graphics-approach to analysis
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than would be the case for an exclusively numerical analysis.

6.2 Details for a Randomized Block Dataset: Hypothetical Data Comparing
Pairs of Diabetics

An extensive search of more than three dozen textbooks and several articles turned up no useful
examples of what we deem to be a particularly promising approach to experimental design and
analysis. In particular, as will be illustrated using hypothetical data, we have strong reason to
believe that relatively few researchers recognize the potential of randomized block designs for
increasing design efficiency when comparing treatments. (We have also come to believe that these
designs are generally not effectively taught in most statistics textbooks.) However simple, our
example illustrates the key points.

Suppose we aim to compare two treatments (that could be two diets, drugs or exercise regimens,
etc.). We begin using simulated data for a sample of 30 diabetics. We shall refer to the two
groups as ‘Treatment’ and ‘Control’, respectively. Suppose further before we began the treatments,
we obtained A1c measures of blood glucose, this being a standard measure that reflects a blood
glucose levels over the most recent 3 months. Given these pre-experimental A1c values, we rank
all persons, and then form blocks of size two: the two highest scores are assigned to block 1, the
next pair to block 2, until all 30 persons are assigned to 15 blocks. For randomized blocks the next
step is to randomly allocate individuals within blocks to the ‘Treatment’ or ‘Control’ groups.

Over a period of several months, say, the experiment will be assumed to have been carefully run
(possibly using double blind methodology) after which A1c measures will again be obtained for all
individuals. The hypothetical A1c values we use for analysis represent a realistic range of values,
as plotted in Figure 10, using function granova.ds. As in the case of the preceding example each
data point corresponds to a row in the original data set, but in this case these rows correspond to
pairs (blocks) of individuals for the ‘Treatment’ and ‘Control’ groups respectively. In this case
the Treatment A1c scores are notably lower than their Control counterparts, which suggests a
desirable effect of the treatment. Indeed, as shown by the 95 percent CI (green line segment, lower
left), these data are inconsistent with the hypothesis of equal mean A1c scores for the two putative
populations. Since A1c scores generally correlate quite highly with one another over time periods
of several months, and blocking was based on initial A1c scores, this design has controlled one
of the key individual differences for participants in this experiment. This general approach, based
on standard blocking methodology, can increase – perhaps substantially – the likelihood of finding
statistically reliable effects. The method can also be helpful in identifying interactions between
treatments and individual difference variables. Generally speaking the stronger the correlation
between the initial ranking variable and the ultimate response (putting aside treatment effects), the
greater the improvement in design efficiency as compared with independent sample designs that
do not employ blocking.

Many authors, including BHH and HMT, have discussed examples of dependent sample data,
examples that can be especially helpful pedagogically. For example, HMT (p. 152) suggest an
efficient design for comparing two mosquito repellants. Their idea takes the following form in the
context of what they term a randomized block design: One might recruit a number of volunteers,
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Figure 10: Dependent sample assessment plot of simulated A1c scores for 15 randomized blocks
of diabetic patients.

and put one one repellant on say the left arm and the other on the right arm, assigning repellants at
random. Under controlled conditions the response would be the number of bites during a specified
time of exposure to the insects. A dependent sample comparison could be used to compare the two
repellants. Such a design is easily generalized to accommodate different subgroups of respondents,
or different controlled conditions. A wide variety of issues related to analyses of such data are
considered in Pruzek and Helmreich (2009).

Treatment effects can often be demonstrated using such a design, even for small samples, whenever
an effective means can be found for ranking individuals before blocking. In this case, the positive
correlation (.62) between scores in the ‘Treatment’ and ‘Control’ columns reflects the dependency
introduced by blocking. Pruzek and Helmreich (2009) discuss various other possibilities in some
detail, including the case where dependent sample assessment plots can be employed to advantage
in the analysis of observational data.

Note further that when an elemental graphic such as that in Figure 10 is used to display data for a
dependent sample analysis, the analyst is provided with a variety of visual information to help un-
derstand such data. A little reflection makes clear that attention need not be restricted to inference
based on (somewhat arbitrary) summary statistics; and indeed, description of data may turn out to
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be at least as interesting or useful as inference. In this case, the graphic shows that 3 of the 15 pairs
exhibit effects contrary to the mean difference between Treatment and Control groups. At least
two possible interpretations seem relevant in such situations: one is that outcome measures – here,
the A1c scores – may not be wholly reliable. It is common for outcome measures to vary more or
less randomly over time. Second, there may be reason to suspect that scores vary systematically
with respect to grouping variables. (It is known that A1c scores tend to differ systematically by
ethnicity.) That is, covariate differences may be associated with individual differences within or
between blocks. In general, graphics may show clusters, outliers, or trends across blocks. In gen-
eral, many such visually identified ‘irregularities’ may be seen as evidence of interactions between
treatments and covariates, interactions that are unlikely to have been identified when analyses do
not go beyond numerical summaries. As can be seen in Figure 9 the function granova.ds permits
printing of labels for points that can facilitate explorations of such possibilities. Finally, note that
marginal distributions for the variate can be informative (shown as rug plots in Figure 10), as can
the shape of the distribution of difference scores (which is often assumed to be normal in the parent
population).

7 Concluding Remarks

Although it has become standard practice to include graphics for many statistical analyses, par-
ticularly those based on regression and ANOVA, with few exceptions such graphics tend not to
be strongly connected or closely linked to corresponding numerical analyses. By introducing ele-
mental graphics, we aim to strengthen the connection between the questions that drive particular
methods of analysis and graphics for displaying data. Experience suggests that this step often helps
to understand the applicability of chosen methods for particular data sets, and also to aid better un-
derstanding of methods generally. Of course it can also help the analyst understand extant data.
While we have concentrated on graphics for various ANOVA methods because we have focused
on documenting a certain package in R, it is clear that elemental graphics have been or could be de-
veloped for many other methods. Graphics produced using the assoc function in the vcd (Meyer
et al. 2011) package in R provide good examples of the possibilities. While elemental graphics
may have special value for pedagogic uses, they can be broadly useful in many situations where
one aims to learn just how particular data points play out in the context of particular methods of
analysis.

We have concentrated on the four functions: granova.1w, granova.2w, granova.contr and
granova.ds, which are available in the R package granova. In the foregoing, we have tried
to illustrate principal aspects of each elemental graphic, but the reader should recognize that far
more insight derives from hands-on experiences of using such graphical methods with one’s own
data, where the particulars of context and applicability may become central. It could be helpful
to conduct studies (where analyses might well be facilitated by methods of the kind we discuss
here!) to compare student learning outcomes, say for instructional methods that are typically used
for teaching ANOVA with methods based on elemental graphics.

A broader challenge is to encourage more focused and deeper thinking about strengths and weak-
nesses of data analytic methods, perhaps especially in the light of graphic display methods for wide

21



varieties of data. In our experience, pedagogical value often leads to practical value in wide ranges
of situations. As the estimable John Tukey so often emphasized, applied science is best served
when methods are used in the service of understanding data, not as ends in themselves. 5

8 Appendix: Commands and Numeric Output from Functions

In what follows, we have used the convention of rendering the R prompt as R>, though the actual
prompt is >. R contains extensive help files on individual commands, type ?command for help. R
installs with several extensive help files, also available at http://cran.r-project.org/manuals.html. In
particular, a good place to start might be An Introduction to R (W. N. Venables and D. M. Smith
and R Development Core Team 2010).

Datasets used in this article may be downloaded from this journal’s website. To be used in R, they
may be placed in the working directory for R. To determine the working directory, or to change it,
use the commands (respectively):

R> getwd()

R> setwd(dir)

The data are then easily entered into R via the command:

R> name <- read.csv(filename)

8.1 Command for Figure 1

R> boxplot(singer$height ~
ordered(singer$voice.part.4, c("Soprano", "Alto", "Tenor", "Bass")),
col = "blue", ylab = "Heights of Singers",
xlab = "Differences in Heights By Part for Choral Singers")

8.2 Command for Figure 2

R> stripchart(singer$height ~
ordered(singer$voice.part.4, c("Soprano", "Alto", "Tenor", "Bass")),
vertical = TRUE, pch = 20, method = "jitter", col = "blue" ,
ylab = "Heights of Singers",
xlab = "Differences in Heights By Part for Choral Singers",
at = c(64.12,65.39,69.40,70.98), xlim=c(63,72))

R> points(c(64.12, 65.39, 69.40, 70.98), c(64.12, 65.39, 69.40, 70.98),
pch = 2, cex = 1.5)

5We wish to thank two doctoral students, Liz Fisk and Jolynn Pek, as well as Professor Bruce Dudek, for their
helpful comments on earlier drafts of this paper.
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R> points(c(64.12, 65.39, 69.40, 70.98), c(64.12, 65.39, 69.40, 70.98),
pch = 17, cex = 1.4, col = "red")

8.3 Command for Figure 3

R> granova.1w(singer$height, singer$voice.part.4,
dosqrs = FALSE, ylab = "Height of Singers", jj = 3)

$grandsum
Grandmean df.bet df.with MS.bet MS.with F.stat F.prob SS.bet/SS.tot

67.30 3.00 231.00 654.10 6.32 103.43 0.00 0.57

8.4 Command and Numeric Output Figure 4:

R> granova.1w(poison$RateSurvTime, poison$Group,
ylab = "Inverse of Survival Time or Survival Rate",
resid = TRUE, top.dot = .15, kx = 1.4, px = 1.4)

$grandsum
Grandmean df.bet df.with MS.bet MS.with F.stat F.prob SS.bet/SS.tot

2.62 11.00 36.00 5.17 0.24 21.53 0.00 0.87

8.5 Command and Numeric Output Figure 5:

R> granova.1w(poison$RankRateSurvTime, poison$Group,
ylab = "Inverse of Survival Time or Survival Rate",
resid = TRUE, top.dot = .15, kx = 1.4, px = 1.4)

$grandsum
Grandmean df.bet df.with MS.bet MS.with F.stat F.prob SS.bet/SS.tot

2.49 11.00 36.00 3.70 0.19 19.18 0.00 0.85

8.6 Command and Numeric Output Figure 6(a):

R> granova.2w(poison[, c(4, 2, 1)])
[1] SurvTime ~ Treatment * Poison
$Treatment.effects

A C D B
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-0.1650 -0.0869 0.0548 0.1970

$Poison.effects
III II I

-0.203 0.065 0.138

$CellCounts.Reordered
Poison

Treatment III II I
A 4 4 4
C 4 4 4
D 4 4 4
B 4 4 4

$CellMeans.Reordered
Poison

Treatment III II I
A 0.210 0.320 0.412
C 0.235 0.375 0.568
D 0.325 0.668 0.610
B 0.335 0.815 0.880

$aov.summary
Df Sum Sq Mean Sq F value Pr(>F)

Treatment 3 0.92121 0.30707 13.8056 3.777e-06 ***
Poison 2 1.03301 0.51651 23.2217 3.331e-07 ***
Treatment:Poison 6 0.25014 0.04169 1.8743 0.1123
Residuals 36 0.80072 0.02224
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

8.7 Command and Numeric Output Figure 6(b):

R> granova.2w(poison[, c(4, 2, 1)], fit = "quadratic")
[1] SurvTime ~ Treatment * Poison
$Treatment.effects

A C D B
-0.1650 -0.0869 0.0548 0.1970

$Poison.effects
III II I

-0.203 0.065 0.138

$CellCounts.Reordered
Poison

Treatment III II I
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A 4 4 4
C 4 4 4
D 4 4 4
B 4 4 4

$CellMeans.Reordered
Poison

Treatment III II I
A 0.210 0.320 0.412
C 0.235 0.375 0.568
D 0.325 0.668 0.610
B 0.335 0.815 0.880

$aov.summary
Df Sum Sq Mean Sq F value Pr(>F)

Treatment 3 0.92121 0.30707 13.8056 3.777e-06 ***
Poison 2 1.03301 0.51651 23.2217 3.331e-07 ***
Treatment:Poison 6 0.25014 0.04169 1.8743 0.1123
Residuals 36 0.80072 0.02224
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

8.8 Command and Numeric Output Figure 7:

R> granova.2w(smokers, fit = ‘quadratic’)
[1] percent ~ income * age
$income.effects

E:>25000 D:15000-24999 C:10000-14999 A:<5000 B:5000-9999
-3.73 -2.07 1.27 1.60 2.93

$age.effects
65+ 17-30 31-65

-13.70 5.27 8.47

$CellCounts.Reordered
age

income 65+ 17-30 31-65
E:>25000 1 1 1
D:15000-24999 1 1 1
C:10000-14999 1 1 1
A:<5000 1 1 1
B:5000-9999 1 1 1

$CellMeans.Reordered
age

income 65+ 17-30 31-65
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E:>25000 17 28 33
D:15000-24999 15 32 36
C:10000-14999 18 36 39
A:<5000 14 38 42
B:5000-9999 16 41 41

$aov.summary
Df Sum Sq Mean Sq

income 4 92.93 23.23
age 2 1440.13 720.07
income:age 8 75.87 9.48

8.9 Command and Numeric Output Figure 8(a):

R> granova.contr(arousal, contrasts = contrasts22, ylab = "Arousal Scores",
xlab = names(contrasts22))

$summary.lm

Call:
lm(formula = resp ~ contrst)

Residuals:
Min 1Q Median 3Q Max

-5.910 -2.015 -0.075 1.885 6.290

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.0825 0.4657 51.712 < 2e-16 ***
contrst1 3.4650 0.9314 3.720 0.000676 ***
contrst2 3.9150 0.9314 4.203 0.000166 ***
contrst3 0.0750 0.9314 0.081 0.936267
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 2.945 on 36 degrees of freedom
Multiple R-squared: 0.4668,Adjusted R-squared: 0.4223
F-statistic: 10.5 on 3 and 36 DF, p-value: 4.173e-05

$means.pos.neg.coeff
neg pos diff stEftSze

Drug.A 22.35 25.82 3.46 1.18
Drug.B 22.12 26.04 3.91 1.33
Drug.A.B 24.05 24.12 0.07 0.03

$contrasts
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Drug.A Drug.B Drug.A.B
[1,] -0.5 -0.5 0.5
[2,] -0.5 0.5 -0.5
[3,] 0.5 -0.5 -0.5
[4,] 0.5 0.5 0.5

$group.means.sds
[,1] [,2] [,3] [,4]

Means 20.43 24.27 23.82 27.81
S.D.s 2.41 2.81 2.74 3.67

8.10 Command and Numeric Output Figure 8(b):

R> contr.Poison <- rep(c(-1, 0, 1), 4)
R> contr.Treatment <- rep(c(3, -3, 1, -1), each = 3)
R> contr.Product <- c(rep(c(-3, 0, 3), 2), rep(c(-1, 0, 1), 2))
R> con.poison <- data.frame(contr.Poison, contr.Treatment, contr.Product)
R> con.poison

contr.Poison contr.Treatment contr.Product
[1,] -1 3 -3
[2,] 0 3 0
[3,] 1 3 3
[4,] -1 -3 3
[5,] 0 -3 0
[6,] 1 -3 -3
[7,] -1 1 -1
[8,] 0 1 0
[9,] 1 1 1

[10,] -1 -1 1
[11,] 0 -1 0
[12,] 1 -1 -1

R> granova.contr(poison$RateSurvTime, con = con.poison)
$summary.lm

Call:
lm(formula = resp ~ contrst)

Residuals:
Min 1Q Median 3Q Max

-1.34972 -0.28122 0.02386 0.30390 0.91469

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 2.62238 0.07891 33.231 < 2e-16 ***
contrst1 4.02505 0.38971 10.328 2.44e-13 ***
contrst2 3.47925 0.42621 8.163 2.35e-10 ***
contrst3 0.46785 0.34522 1.355 0.182
---
Signif. codes: 0 Ô***Õ 0.001 Ô**Õ 0.01 Ô*Õ 0.05 Ô.Õ 0.1 Ô Õ 1

Residual standard error: 0.5467 on 44 degrees of freedom
Multiple R-squared: 0.7992,Adjusted R-squared: 0.7855
F-statistic: 58.38 on 3 and 44 DF, p-value: 2.21e-15

$means.pos.neg.coeff
neg pos diff stEftSze

contr.Poison 1.80 3.80 2.00 4.07
contr.Treatment 2.01 3.23 1.22 2.49
contr.Product 2.62 2.98 0.36 0.74

$contrasts
contr.Poison contr.Treatment contr.Product

[1,] -0.25 0.250 -0.375
[2,] 0.00 0.250 0.000
[3,] 0.25 0.250 0.375
[4,] -0.25 -0.250 0.375
[5,] 0.00 -0.250 0.000
[6,] 0.25 -0.250 -0.375
[7,] -0.25 0.083 -0.125
[8,] 0.00 0.083 0.000
[9,] 0.25 0.083 0.125

[10,] -0.25 -0.083 0.125
[11,] 0.00 -0.083 0.000
[12,] 0.25 -0.083 -0.125

$group.means.sds
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

Means 2.49 3.27 4.80 1.16 1.39 3.03 1.86 2.71 4.26 1.69 1.7 3.09
S.D.s 0.50 0.82 0.53 0.20 0.55 0.42 0.49 0.42 0.23 0.36 0.7 0.24

8.11 Command and Numeric Output Figure 9:

R> granova.ds(schiz, rev = TRUE, ident = TRUE, main = "Dependent Sample Graphic
for Schizophrenic Behavior Ratings, n = 12")

Summary Stats
n 12.000
mean(x) 2.534
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mean(y) 2.142
mean(D=x-y) 0.392
SD(D) 0.424
ES(D) 0.926
r(x,y) 0.817
r(x+y,d) 0.604
LL 95\%CI 0.123
UL 95\%CI 0.662
t(D-bar) 3.208
df.t 11.000
pval.t 0.008

8.12 Command and Numeric Output Figure 10:

R> granova.ds(a1c, revc = TRUE, main = "Dependent Sample Plot of n=15
Pairs of Hypothetical A1c Scores")

Summary Stats
n 15.000
mean(x) 9.108
mean(y) 8.140
mean(D=x-y) 0.968
SD(D) 0.971
ES(D) 0.997
r(x,y) 0.622
r(x+y,d) -0.114
LL 95\%CI 0.430
UL 95\%CI 1.506
t(D-bar) 3.862
df.t 14.000
pval.t 0.002
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